一、引言
动物检测作为计算机视觉中的经典目标检测任务,具有广泛的应用场景,包括智慧农业、智能监控、动物行为分析和宠物识别等。随着深度学习技术的发展,目标检测模型如YOLO系列因其高效、准确,成为工业界和学术界的主流选择。
本文重点讲解如何基于最新的YOLOv10模型,利用开源动物数据集(COCO、Open Images、iNaturalist)完成包含4类动物(dog、cat、cow、horse)的检测任务。文章详细介绍数据集准备、模型训练、UI界面搭建,附完整代码,实现端到端的深度学习动物检测流程。
二、数据集介绍
动物检测任务对数据的依赖极大。本文采用以下三个经典大规模数据集,充分保证模型泛化和鲁棒性:
1. COCO数据集
- 介绍:COCO(Common Objects in Context)是目标检测、分割、关键点检测的权威数据集。
- 动物类别:包含丰富的动物标注,其中有dog、cat、cow、horse等类别。
- 官网:COCO Dataset
- 格