随着农业现代化的发展,作物病害检测成为保障农作物产量和质量的关键环节。传统的人工检测方法效率低下,且容易受到主观因素影响。近年来,深度学习技术在图像识别领域取得了显著成果,为作物病害检测提供了新的解决方案。本文将详细介绍如何利用YOLOv8模型,结合PlantVillage数据集,构建一个高效的作物病害检测系统,并配备用户友好的图形界面,实现从数据预处理、模型训练到部署的完整流程。
一、项目概述
1.1 项目目标
- 高效检测:实现对多种作物病害的快速准确识别。
- 用户友好:提供图形界面,方便非专业用户操作。
- 可扩展性强:系统结构清晰,便于后续功能扩展和模型更新。
1.2 技术选型
- 检测模型:YOLOv8(You Only Look Once version 8),具备高精度和实时性。
- 数据集:PlantVillage,包含多种作物的健康和病害叶片图像。
- 开发语言:Python 3.8。