一、项目背景与意义
在现代智能家居系统中,窗户和门的“开/关状态”直接关系到家庭安全与能耗控制。传统的传感器方法需要额外布线和维护,而利用摄像头与深度学习方法实现窗户/门状态的视觉识别,可显著降低硬件依赖、提升灵活性与扩展性。
本项目旨在:
- 基于ADE20K数据集提取窗户和门目标;
- 对窗户与门目标状态进行手动或辅助标注(开/关);
- 使用YOLOv8训练一个开关状态检测模型;
- 构建用户友好的可视化界面;
- 提供完整、可部署的检测系统方案。
二、ADE20K数据集介绍与预处理
2.1 数据集简介
ADE20K 是由 MIT CSAIL 发布的语义分割数据集,广泛用于场景理解任务。包含:
- 超过 25,000 张图片;
- 图像覆盖多种场景(室内、室外);
- 共 150 个语义类别(如 wall, door, window, etc.);
- 每张图像提供完整的像素级分割标签。
参考分类标签:
类别ID |
---|