1. 引言
皮肤病是全球范围内最常见的健康问题之一,影响着各个年龄段的人群。传统的皮肤病诊断依赖于皮肤科医生的视觉检查,这往往需要丰富的经验和专业知识。随着深度学习技术的发展,计算机视觉在医学图像分析领域展现出巨大潜力。本文将详细介绍如何使用改进的YOLOv11模型构建一个端到端的皮肤病分类系统,包括数据集处理、模型训练、性能优化以及用户界面开发。
本系统旨在帮助医疗专业人员和非专业人士快速识别常见皮肤病类型,为早期诊断和治疗提供辅助工具。我们将从理论到实践,逐步讲解每个环节的实现细节,并提供完整的代码实现。
2. 皮肤病数据集介绍与处理
2.1 常用皮肤病数据集
在皮肤病分类任务中,有几个公开可用的高质量数据集:
- HAM10000数据集:包含10015张皮肤镜图像,涵盖7种不同的色素性皮肤病变类型。
- ISIC档案:国际皮肤成像协作组织提供的大型皮肤镜图像集合,包含多种皮肤病变类型。
- DermNet:包含23种常见皮肤病的临床图像。
- SD-198:包含198类皮肤病的6560张临床图像。
在本项目中,我们将主要使用HAM10000数据集,它包含了以下7种皮肤病类型:
- 光化性角化病(akiec)
- 基底细胞癌(bcc)
- 良性角化病(bkl)