1. 引言
在计算机视觉领域,目标检测一直是最基础也是最具有挑战性的任务之一。随着深度学习技术的快速发展,目标检测算法在准确性和实时性方面都取得了显著进步。其中,YOLO(You Only Look Once)系列算法因其出色的速度和精度平衡而广受欢迎。本文将详细介绍基于YOLOv8的多目标检测系统的完整开发过程,包括算法原理、数据集准备、模型训练、UI界面开发以及系统集成。
1.1 目标检测技术发展概述
目标检测技术的发展经历了从传统方法到深度学习方法的演变。早期的目标检测主要基于手工设计的特征(如HOG、SIFT等)和机器学习分类器(如SVM)。随着2012年AlexNet在ImageNet竞赛中的突破性表现,基于深度学习的目标检测方法开始占据主导地位。
目前主流的目标检测算法可以分为两大类:
- 两阶段检测器:如R-CNN系列(Fast R-CNN, Faster R-CNN),先生成候选区域再分类
- 单阶段检测器:如YOLO系列、SSD等,直接在图像上进行回归预测
YOLOv8作为YOLO系列的最新版本,在保持实时性的同时进一步提高了检测精度,成为工业界和学术界广泛采用的解决方案。
1.2 本文内容结构
本文将按照以下结构组织内容:
- YOLOv8算法原理深入解析
- 数据集准备与标注
- 模型训练与优化
- UI界面设计与实现
订阅专栏 解锁全文
491

被折叠的 条评论
为什么被折叠?



