1. 引言
1.1 研究背景与意义
火灾是全球范围内最具破坏性的灾害之一,每年造成大量人员伤亡和财产损失。根据世界火灾统计中心的数据,全球每年发生火灾约700-800万起,死亡约7-8万人,伤约30-40万人。特别是在森林地区,火灾不仅破坏生态环境,还会导致巨大的经济损失。在室内环境中,火灾同样威胁着人们的生命财产安全。
传统的火灾检测方法主要依赖烟雾探测器、温度传感器等物理设备,这些方法存在响应延迟大、易受环境干扰、覆盖范围有限等局限性。随着计算机视觉和深度学习技术的快速发展,基于视觉的烟火检测技术逐渐成为研究热点。这类技术能够实现非接触式、大范围、实时的火灾监测,为火灾预警提供了新的解决方案。
1.2 烟火检测技术发展现状
早期的烟火检测主要基于颜色、形状、纹理等手工设计的特征,但这些方法在复杂场景下的鲁棒性较差。近年来,深度学习技术,特别是卷积神经网络(CNN)在目标检测领域取得了显著进展。从R-CNN、Fast R-CNN、Faster R-CNN等两阶段检测器,到YOLO、SSD等单阶段检测器,目标检测的精度和速度都得到了大幅提升。
YOLO(You Only Look Once)系列作为单阶段检测器的代表,以其高效的检测速度和在精度与速度间的良好平衡而广受欢迎。YOLOv12作为该系列的最新版本,在检测精度和速度方面都有显著提升,特别适合实时烟火检测应用。
2. YOLOv12算法原理
2.1 YOLO系列发展概述
YOLO系列自2015年首次提出以来,经历了多次重大改进:
-
YOLOv1(2015):首次提出将目标检测视为回归问题,实现端到端检测
<
订阅专栏 解锁全文
276

被折叠的 条评论
为什么被折叠?



