Python数据分析实战-链家北京二手房价分析

本文通过Python进行链家北京二手房数据的深度分析,包括数据预处理、房源分布、价格特性分析等,揭示了北京二手住房市场的主要特征,如价格与面积、区域、楼层等因素的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python数据分析实战-链家北京二手房价分析

一、分析目标

1、查看北京二手居民住房的分布价格情况,Part 1- 数据读取和预处理;
2、理解变量、数据选取、重复值缺失值处理,Part 2 - 北京市房源分布;
3、数量、单价、总价,Part 3 - 各城区房源分布,Part 4 - 各城区房价分布;
4、单价分布、总价分布、高价Top15小区、低价Top15小区,Part 5 - 各城区房源面积分布;
5、全市平均面积分布、各城区平均面积分布、各城区总面积分布,Part 6 - 房价与房源特性的关系;
6、房价与户型、楼层、朝向、建筑年代的关系。

二、分析具体内容

Part 1 - 数据读取和预处理
1、获取数据
数据来源于网上的链家北京二手房的信息。
在这里插入图片描述
可以看到一共有12个变量,包括:
Direction: 房屋朝向;Region/District/Gadern: 城区/街道/小区地址或者名称Id: 链家编码;Elevator: 楼是否有电梯;Floor:楼层;Layout: 房屋户型;Renovation: 装修情况;Size: 房屋大小,单位平米;Year: 房屋建筑年代;Price: 房屋总价。
2、查看缺失值以及变量类型

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Conn_w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值