北京市某平台二手房数据分析-基于python

本文介绍了使用Python的pandas库对二手房数据进行预处理,包括读取、数据概述、缺失值填充和重复值去除,然后利用pyecharts进行房价分布、房源数量和价格、房源特征等多维度可视化分析。结论显示丰台、朝阳等区房源最多,东城、西城房价最高。
摘要由CSDN通过智能技术生成

前言:用pandas进行数据处理,pyecharts对处理后的数据进行可视化分析市面上二手房各项基本特征及房源分布情况,探索二手房大数据背后的规律。

一、数据处理

1.读取数据

import pandas as pd
df = pd.read_csv('二手房数据.csv', encoding ='gb18030',index_col=False)
df.head()

2. 数据概览

了解一下数据的基本情况,共23677条数据。电梯列有缺失,只有15422条数据。

df.info()

3. 查看电梯列共有几种值

df['电梯'].unique()

 除有电梯

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值