简介:因子分析可以看成是主成分分析的推广与发展。因子分析法通过研究变量间的相关系数矩阵,把这些变量间错综复杂的关系归结成少数几个综合因子,由于归结出的因子个数少于原始变量的个数,但是它们又包含原始变量的信息,所以,这一分析过程也称为降维。由于因子往往比主成分更易得到解释,故因子分析比主成分分析更容易成功,从而有更广泛的应用。(能用主成分分析的均可以用因子分析)
因子分析和主成分分析的对比:
因子分析的实例(简化列举)
原理部分(不重要)
(1)模型假设
(2)模型性质
(3)参数估计
(4)因子旋转的方法
(5)因子得分
因子分析操作步骤
相关解释:
KMO检验和巴特利特球形检验
操作步骤
结果分析
确定因子的数目
调整因子个数重新计算
对因子分析结果的介绍
总方差解释表
成分矩阵
旋转后的因子载荷散点图
因子得分