相关性分析(清风建模学习笔记)

本文详细介绍了皮尔逊相关系数和斯皮尔曼等级相关系数在建模中的应用,包括适用场景、计算方法、误区解析,以及如何通过假设检验判断显著性。特别强调了在选择哪种系数时的考虑因素,以及如何正确使用这些工具来评估线性和非线性关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本讲我们将介绍两种最为常用的相关系数:皮尔逊 pearson相关系数和斯皮尔曼 spearman 等级相关系数。 它们可用来衡量两个变量之间的相关性的大小,根据数据满足的不同条件,我们要选择不同的相关系数进行计算和分析(建模论文中最容易用错的方法)。

皮尔逊相关系数:


总体皮尔逊相关系数:

 样本皮尔逊相关系数:

注意 :总体皮尔逊相关系数除以n,样本皮尔逊相关系数除以n-1

运用皮尔逊相关系数的条件:

关于皮尔逊相关系数的一些误区:

这里的相关系数只是用来衡量两个变量 线性相关 程度的指标;
也就是说,你必须 先确认这两个变量是线性相关的 ,然后这个相关系数才能
告诉你他俩相关程度如何。

总结:

1 )如果两个变量本身就是线性的关系, 那么皮尔逊相关系数绝对值大的就是相关性强,小的就是相关性弱;
2 )在不确定两个变量是什么关系的情况 下,即使算出皮尔逊相关系数,发现很大,也不能说明那两个变量线性相关,甚至不能说他们相关,我们一定要画出散点图来看才行。

 一定要先确定为线性关系才能用皮尔逊相关系数

事实上,比起相关系数的大小,我们往往更关注的是显著性。
(假设检验)

求皮尔逊相关系数的步骤:

第一步:数据描述性统计

第一种方法Matlab:

第二种方法Excel

第三种方法spss:

第二步: 判断数据是否具有线性关系

第三步:正态性检验 

(1)当样本n>30时,使用正态分布JB检验(大样本 n>30)

(2) 当样本3≤n≤50时,Shapiro-wilk检验

 

 (3)Q-Q图(需要大量数据,少用)

 第四步:计算皮尔逊相关系数和皮尔逊相关系数假设性检验(显著性检验)

 皮尔逊相关系数检验:

如何美化皮尔逊系数表?
 

 

 

皮尔逊系数假设性检验(p值判断法):

MATLAB:


 

三颗星星表示相关性越显著 

SPSS:
步骤:分析->相关->双变量(其中双尾和单尾表示为双侧检验还是单侧检验)->皮尔逊 

求斯皮尔曼相关系数:

定义:

MATLAB求法:
 

 斯皮尔曼的假设性检验:

小样本(n<30):直接查表(表见拓展资料),样本相关系数r必须大于表中数据才能得到显著结论。

大样本:

 

也可以直接使用SPSS;

斯皮尔曼和皮尔逊系数的选择:
 

百分之九十的情况选择斯皮尔曼系数,因为皮尔逊系数需要满足较多条件。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值