- 闯关任务:使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 ceval 数据集上的性能。
1. 测评重要性与挑战
OpenCompass司南 在测评大模型时,会根据模型类型的不同,划分成不同的评测模型,同时,根据模型问题有没有固定答案,又可以将评测分为客观评测和主观评测:
在主观评测方面,司南是以对战胜率进行评价的,包括了创造语言、数学知识推理等题目;在客观评测方面,司南是以选择题和填空题形式考察。此外,还有长文本评测:
2.发展趋势分析
LLM模型的发展趋势分析如下图所示:
下一代LLM测评发展方向主要有:
3.OpenCompass司南实践
在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。
- 配置:这是整个工作流的起点。您需要配置整个评估过程,选择要评估的模型和数据集。此外,还可以选择评估策略、计算后端等,并定义显示结果的方式。
- 推理与评估:在这个阶段,OpenCompass 将会开始对模型和数据集进行并行推理和评估。推理阶段主要是让模型从数据集产生输出,而评估阶段则是衡量这些输出与标准答案的匹配程度。这两个过程会被拆分为多个同时运行的“任务”以提高效率。
- 可视化:评估完成后,OpenCompass 将结果整理成易读的表格,并将其保存为 CSV 和 TXT 文件。
接下来,分别用命令行方式和配置文件的方式评测InternLM2-Chat-1.8B,实现书生浦语在 C-Eval
基准任务上的评估。
首先,创建相应虚拟环境,安装对应依赖包,并下载OpenCompass源码:
cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
解压评测数据集到指定位置:
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
3.1使用命令行配置参数法进行评测
列出所有跟 InternLM 及 C-Eval 相关的配置:
python tools/list_configs.py internlm ceval
找到最匹配的配置文件,打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py,
改为如下代码:
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-1.8b-hf',
path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
min_out_len=1,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,因此可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出:
#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug
3.2使用配置文件修改参数法进行评测
除了通过命令行配置实验外,OpenCompass 还允许用户在配置文件中编写实验的完整配置,并通过 run.py 直接运行它。配置文件是以 Python 格式组织的,并且必须包括 datasets 和 models 字段。此配置通过 继承机制 引入所需的数据集和模型配置,并以所需格式组合 datasets 和 models 字段。编写配置脚本如下:
from mmengine.config import read_base
with read_base():
from .datasets.ceval.ceval_gen import ceval_datasets
from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models
datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models
运行任务时,只需将配置文件的路径传递给 run.py即可:
cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug
结果与命令行配置参数法一致。