[书生实战营] OpenCompass 评测 InternLM-1.8B 实践

  • 闯关任务:使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 ceval 数据集上的性能。

1. 测评重要性与挑战

        OpenCompass司南 在测评大模型时,会根据模型类型的不同,划分成不同的评测模型,同时,根据模型问题有没有固定答案,又可以将评测分为客观评测和主观评测:

        在主观评测方面,司南是以对战胜率进行评价的,包括了创造语言、数学知识推理等题目;在客观评测方面,司南是以选择题和填空题形式考察。此外,还有长文本评测:

2.发展趋势分析

        LLM模型的发展趋势分析如下图所示:

        下一代LLM测评发展方向主要有:

3.OpenCompass司南实践       

        在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。

  • 配置:这是整个工作流的起点。您需要配置整个评估过程,选择要评估的模型和数据集。此外,还可以选择评估策略、计算后端等,并定义显示结果的方式。
  • 推理与评估:在这个阶段,OpenCompass 将会开始对模型和数据集进行并行推理和评估。推理阶段主要是让模型从数据集产生输出,而评估阶段则是衡量这些输出与标准答案的匹配程度。这两个过程会被拆分为多个同时运行的“任务”以提高效率。
  • 可视化:评估完成后,OpenCompass 将结果整理成易读的表格,并将其保存为 CSV 和 TXT 文件。

        接下来,分别用命令行方式和配置文件的方式评测InternLM2-Chat-1.8B,实现书生浦语在 C-Eval 基准任务上的评估。

        首先,创建相应虚拟环境,安装对应依赖包,并下载OpenCompass源码:

cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .

        解压评测数据集到指定位置:

cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

3.1使用命令行配置参数法进行评测

        列出所有跟 InternLM 及 C-Eval 相关的配置:

python tools/list_configs.py internlm ceval

         找到最匹配的配置文件,打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py,改为如下代码

from opencompass.models import HuggingFaceCausalLM


models = [
    dict(
        type=HuggingFaceCausalLM,
        abbr='internlm2-1.8b-hf',
        path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
        tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
        model_kwargs=dict(
            trust_remote_code=True,
            device_map='auto',
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            use_fast=False,
            trust_remote_code=True,
        ),
        max_out_len=100,
        min_out_len=1,
        max_seq_len=2048,
        batch_size=8,
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]

        通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,因此可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出:

#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug

3.2使用配置文件修改参数法进行评测

        除了通过命令行配置实验外,OpenCompass 还允许用户在配置文件中编写实验的完整配置,并通过 run.py 直接运行它。配置文件是以 Python 格式组织的,并且必须包括 datasets 和 models 字段。此配置通过 继承机制 引入所需的数据集和模型配置,并以所需格式组合 datasets 和 models 字段。编写配置脚本如下:

from mmengine.config import read_base

with read_base():
    from .datasets.ceval.ceval_gen import ceval_datasets
    from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models

datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models

        运行任务时,只需将配置文件的路径传递给 run.py即可:

cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug

        结果与命令行配置参数法一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值