B题:城市垃圾分类运输的路径优化与调度
随着城市化进程加快,城市生活垃圾问题给社会的可持续发展和人类健康带来了严峻的挑战和威胁。2004年,我国成为全球垃圾产量最大的国家;2016年,我国垃圾清运量已超过2亿吨;2019年,超过3.43亿吨;2023年已达到4亿吨。巨大的垃圾产生量已逼近我国各城市和地区对其处理能力的极限,垃圾管理问题变得越来越突出,这对我国生活垃圾的收集、运输和处理提出了更高的要求。
当前垃圾分类运输成为城市环境治理的关键环节,需考虑不同垃圾类型(如厨余垃圾、可回收物、有害垃圾、其他垃圾)的收集要求、运输车辆的载重与容积限制、中转站的处理能力及运营时间窗口,同时需兼顾运输成本与碳排放控制。如何通过数学建模优化城市垃圾分类运输路径与调度,提升效率并降低成本,是当前城市管理的重要课题。
请根据所给数据资料,解决以下问题:
问题一:单一车辆类型下的基础路径优化与调度
某城区有n个垃圾分类收集点,每个收集点每日产生一种类型的垃圾(假设仅考虑“厨余垃圾”单一类型,需由专用车辆运输)。已知各收集点的坐标 ( x i , y i ) (x_i, y_i) (xi,yi)、垃圾产生量 w i w_i wi(吨),以及运输车辆的最大载重Q(吨)和固定发车点(垃圾处理厂,编号为0)。假设车辆从垃圾处理厂出发,完成所有收集点的运输任务后返回垃圾处理厂,且同一车辆可多次往返(即允许分批运输)。请完成以下任务:
- 建立数学模型,以最小化每日总行驶距离为目标,确定运输车的数量、每辆运输车的运输路径及任务分配(即哪辆车负责哪些收集点,每趟运输的具体路线)。
- 若给定n=30个收集点(坐标及垃圾产生量见附件1),Q=5吨,给出此问题数学模型,设计求解算法,求出最优解,并分析模型的时间复杂度。
- 讨论模型的局限性(如未考虑交通拥堵、车辆行驶速度差异等),并提出至少一种改进方向。
问题二:多车辆协同与载重约束下的优化
现实中,垃圾分类运输需区分不同垃圾类型(本题中仅考虑4类垃圾,即厨余垃圾、可回收物、有害垃圾、其他垃圾),每类垃圾需由专用车辆运输(车辆类型k=1,2,3,4分别对应上述4类垃圾)。每类车辆的载重限制 Q k Q_k Qk、容积限制 V k V_k Vk、单位距离运输成本 C k C_k Ck不同(参数见附件2),且每个收集点可能产生多种类型的垃圾(各类型垃圾量 w i , k ≥ 0 w_{i,k}≥0 wi,k≥0,满足 ∑ k = 1 4 w i , k = w i \sum_{k=1}^{4} w_{i,k}=w_i ∑k=14wi,k=wi)。车辆从处理厂出发,完成同类型垃圾收集后返回处理厂,不同类型车辆可独立调度。
- 建立以最小化每日总运输成本为目标的多车辆协同运输模型。
- 若附件1中30个收集点调整为产生4类垃圾(数据见附件3),且附件2中 Q k Q_k Qk, V k V_k Vk, C k C_k Ck给定,说明如何将问题一的算法扩展至本问题(需考虑多车辆调度与类型约束),给出此问题数学模型,分析模型的约束条件变化,并求出最优解。
- 若增加“车辆每日最大行驶时间”约束,如何修改模型?举例说明时间约束对路径规划的影响(如某车辆因时间不足需拆分任务)。
问题三:含中转站选址与时间窗口的综合优化
为进一步提升效率,考虑在城区规划若干中转站(候选位置m个,编号n+1,n+2…m)。中转站可对各类垃圾进行临时存储与分拣,每类垃圾在中转站的最大存储量为 S k S_k Sk吨,且中转站仅在固定时间窗口 [ a j , b j ] [a_j, b_j] [aj,bj]内允许车辆停靠(j为中转站编号)。同时,运输过程需考虑碳排放约束,碳排放尽可能小,碳排放与车辆载重、行驶距离正相关,计算公式为:
E = ∑ k ∑ 车辆 t ( d t , k ⋅ α k + β k ⋅ ∑ i w i , k , t ) E=\sum_{k} \sum_{车辆 t}\left(d_{t, k} \cdot \alpha_{k}+\beta_{k} \cdot \sum_{i} w_{i, k, t}\right) E=∑k∑车辆t(dt,k⋅αk+βk⋅∑iwi,k,t)
其中 d t , k d_{t,k} dt,k为车辆t的行驶距离, α k \alpha_k αk, β k \beta_k βk为碳排放系数(见附件2),假设中转站每日均可清空。
- 建立“中转站选址-路径优化-碳排放最少”的综合数学模型,目标为最小化运输成本与中转站建设成本之和(中转站建设成本为固定值 T j T_j Tj,每个中转站使用期限为10年,选址则产生该成本)。
- 对于附件1中的30个收集点,假设候选中转站位置为5个(中转站候选位置及参数见附件4),其他参数见附件2与附件3,设计两阶段求解算法:
- 第一阶段:确定中转站选址与各收集点对应的中转站分配;
- 第二阶段:针对每个中转站,优化各类型车辆的运输路径。
说明两阶段的关联与协同机制(如中转站选址影响路径长度,路径优化需反应中转站容量限制)。
- 若实际路网存在单行道、禁行时段等非对称约束(即从点i到点j的距离与j到i的距离不同),如何修改距离矩阵并调整模型?对比对称路网与非对称路网下路径优化的复杂度差异(城市路网矩阵说明见附件5)。
说明:垃圾处理厂的工作时间为6:00-18:00,所有车辆行驶速度均为40km/h。
思路详解
问题一:单一车辆类型下的基础路径优化与调度
1)建模目标
以最小化每日总行驶距离为目标,规划每辆车的运输路径与任务分配。
2)模型建立
(1)定义变量
- n n n:收集点数量
- Q Q Q:单辆车最大载重
- w i w_i wi:第 i i i 个收集点的垃圾量(吨)
- ( x i , y i ) (x_i, y_i) (xi,yi):收集点坐标
- d i j d_{ij} dij:点 i i i 到点 j j j 的欧式距离
- x i j k x_{ij}^k xijk:若车 k k k 从点 i i i 到点 j j j,则为 1,否则为 0
- y i k y_i^k yik:车 k k k 是否访问点 i i i
- q i k q^k_i qik:车 k k k 从点 i i i 收集的垃圾量
(2)约束条件
- 每个点必须被收集一次: ∑ k y i k = 1 \sum_k y_i^k = 1 ∑kyik=1
- 每辆车单趟运输垃圾总量 ≤ Q Q Q
- 每辆车从垃圾厂出发并返回:以 0 为起点和终点的路径
- 车辆可多次往返,但每次路径需闭环
- 子环约束(使用 MTZ 法或子巡回消除方法)
(3)目标函数
min ∑ k ∑ i = 0 n ∑ j = 0 n d i j ⋅ x i j k \min \sum_k \sum_{i=0}^n \sum_{j=0}^n d_{ij} \cdot x_{ij}^k mink∑i=0∑nj=0∑ndij⋅xijk
3)算法设计
- 可使用启发式方法,如 Clarke-Wright 节约法,贪心法 + 2-opt 优化;
- 精确求解可用整数线性规划(ILP),例如 Gurobi;
- 若使用分批次调度,可先聚类(K-means)再规划路径。
4)复杂度分析
- 精确方法为 NP-hard,复杂度为 O ( n ! ) O(n!) O(n!);
- 启发式可将复杂度降为 O ( n 2 ) O(n^2) O(n2);
- 分批调度增加调度维度,需额外设计车辆循环机制。
5)模型局限与改进
-
未考虑道路情况、拥堵、信号灯、时间窗等;
-
改进方向:
- 加入时间窗限制,形成 VRPTW;
- 引入动态交通权重;
- 用模拟退火/遗传算法提升大规模问题求解能力。
问题二:多车辆协同与载重约束下的优化
1)建模目标
最小化每日总运输成本,考虑不同车辆类型、成本与容量。
2)模型建立
(1)新增参数
- Q k , V k Q_k, V_k Qk,Vk:第 k k k 类车辆的质量/体积载重限制
- C k C_k Ck:单位距离成本
- w i , k w_{i,k} wi,k:第 i i i 个点的第 k k k 类垃圾量
- x i j k , t x_{ij}^{k,t} xijk,t:第 k k k 类第 t t t 辆车是否从 i i i 到 j j j
- 车辆集合按类型划分独立
(2)约束条件
- 每类垃圾由相应车辆运送;
- 各类车辆载重、体积均不超限;
- 每辆车路径形成闭环;
- 每类垃圾在所有车辆中被完全分配;
- 每类车辆间独立调度。
(3)目标函数
min ∑ k = 1 4 ∑ t C k ∑ i , j d i j ⋅ x i j k , t \min \sum_{k=1}^4 \sum_t C_k \sum_{i,j} d_{ij} \cdot x_{ij}^{k,t} mink=1∑4t∑Cki,j∑dij⋅xijk,t
3)模型扩展说明
- 问题一算法可扩展为:按垃圾类型划分子问题,分别调用相同的路径优化器;
- 车辆类型需增加资源约束维度(体积、成本);
- 添加多目标可用加权法或 ε-约束法处理。
4)时间约束扩展
- 每辆车最大行驶时间 T max T_{\max} Tmax:
∑ i , j d i j v ⋅ x i j k , t ≤ T max \sum_{i,j} \frac{d_{ij}}{v} \cdot x_{ij}^{k,t} \leq T_{\max} i,j∑vdij⋅xijk,t≤Tmax
- 举例:若某车需耗时 > T max T_{\max} Tmax,可拆分任务至多车多次执行;
- 需增加调度循环机制与“时间窗-资源协调”机制。
问题三:含中转站选址与时间窗口的综合优化
1)建模目标
最小化运输成本 + 中转站建设成本,同时约束碳排放最小。
2)模型建立
(1)新增变量
- z j ∈ { 0 , 1 } z_j \in \{0,1\} zj∈{0,1}:中转站 j j j 是否启用
- T j T_j Tj:中转站 j j j 的建设成本
- S k , j S_{k,j} Sk,j:中转站 j j j 对第 k k k 类垃圾的最大容量
- [ a j , b j ] [a_j, b_j] [aj,bj]:中转站可用时间窗
- α k , β k \alpha_k, \beta_k αk,βk:第 k k k 类车碳排放系数
- E E E:总碳排放量
(2)约束
- 每个收集点对应一个中转站;
- 每站各类垃圾总量 ≤ 存储上限;
- 运输路径需在中转站时间窗内;
- 每辆车路径总排放量计算方式:
E = ∑ k , t α k d k , t + β k w k , t E = \sum_{k,t} \alpha_k d_{k,t} + \beta_k w_{k,t} E=k,t∑αkdk,t+βkwk,t
(3)目标函数
min [ 运输成本 + ∑ j T j z j + γ ⋅ E ] \min \left[ \text{运输成本} + \sum_j T_j z_j + \gamma \cdot E \right] min[运输成本+j∑Tjzj+γ⋅E]
3)两阶段求解算法
阶段一:中转站选址与点分配
- 建模为设施选址问题(Location Problem);
- 可用 K-means 聚类/模拟退火;
- 目标为选址+总转运成本最小。
阶段二:路径优化
- 对每个中转站,独立构建 VRPTW;
- 引入时间窗约束 + 站点容量限制;
- 求解路径并分配车辆,优化碳排放。
4)协同机制说明
- 中转站决定路径长度与调度分区;
- 路径反馈影响中转站容量是否满足;
- 可建立双层优化:外层为选址,内层为调度。
5)非对称路网调整说明
(1)距离矩阵调整
- 使用 d i j ≠ d j i d_{ij} \ne d_{ji} dij=dji 非对称矩阵;
- 原有算法需修改为适应非对称 TSP(ATSP);
- 比如改为有向图搜索或网络流表示。
(2)复杂度差异
- 对称问题有更多启发式算法支持;
- 非对称问题路径更复杂,组合数增加;
- 增加交通限制后需用更强约束建模技术如时间窗网络图或交通图。