纯强迫振动——达朗贝尔行波解的转换以及叠加原理的应用

达朗贝尔行波解的转化

\small \mu_{tt}-a^2\mu_{xx}=f(x,t)

\small \mu(x,0)=0

\small \mu_{t}(x,0)=0

我们在整个时间范围内所发生的位移,通过很多的时间区间,我们把t,f分割成无数的\small (\tau,\tau+\Delta \tau)累积叠加,对每一个时间区间的振动位移叠加起来,实际上是做了一个积分变换,我们是为了用前面的一维齐次的波动方程,达朗贝尔解的形式

我们将x处t时刻所受到的力,单位质点所受到的外力,就是加速度,将\small f(x,t)看成是\small t=\tau时刻的加速度,这个\small \tau本身也是从\small 0->+\infty,最后这个\small t \in (0,\infty)

方程转变为\small v_{tt}-a^2v_{xx}=0,v_t(x,t)|_{t=\tau}=f(x,t),v(x,t)|_{t=\tau}=0,把任何时刻的力,转换为初始加速度,等效于积分变换,转换为速度函数的波动方程

我们令\small T=t-\tau,进行一次平移变换

方程化简为\small v_{tt}-a^2v_{xx}=0,v(x,T)|_{T=0}=0,v_{T}(x,T)|_{T=0}=f(x,\tau)

我们可以得到

\small v(x,t,\tau)=\frac{1}{2a}\int_{x-aT}^{x+aT}f(\alpha,\tau)d\alpha

\small =\frac{1}{2a}\int_{x-a(t-\tau)}^{x+a(t-\tau)}f(\alpha,\tau)d\alpha

\small u(x,t)=\int_0^{t}v(x,t,\tau)d\tau=\frac{1}{2a}\int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)}f(\alpha,\tau)d\alpha d \tau

冲量法原理就等效成一个积分变换


上一章所说的\small \mu_{xx}-\mu_{yy}=1,\mu(x,0)=x,\mu_y(x,0)=2

我们利用波动方程把y看作t,转换为

\small \mu_{yy}-\mu_{xx}=-1=f(x,t)


叠加定理引入

\small \mu_{tt}-a^2\mu_{xx}=f(x,t)

\small \mu(x,0)=\phi(x)

\small \mu(x,0)=\psi(x)

只要是u,我们就可以称作线性方程,满足叠加原理


叠加原理求解

如果\small L \mu_i=f_i,(i=1,2,3....)

我们可以推出\small L(\sum_i C_i \mu_i)=\sum_{i=1} C_i f_i

条件是L是线性算符,如果算符不是线性,那么就不满足叠加原理,平方就不是一个线性算符

达朗贝尔算符是一个线性算符

我可以把它看作若干个线性子系统的叠加

\small \mu=\mu^{\romannumeral1}+\mu^{\romannumeral2},其中

\small \mu^{\romannumeral1}_{tt}-a^2\mu_{xx}^{\romannumeral1}=0,\mu^{\romannumeral1}(x,0)=\phi(x),\mu^{\romannumeral1}_{t}(x,0)=\psi(x)

\small \mu^{\romannumeral2}_{tt}-a^2\mu_{xx}^{\romannumeral2}=f(x,t),\mu^{\romannumeral2}(x,0)=0,\mu^{\romannumeral2}_{t}(x,0)=0

把一个线性系统看作是两个线性系统的叠加

这样一个用叠加原理处理的,既有强迫振动源还有初始条件

最后的\small \mu(x,t)=\mu^{\romannumeral1}+\mu^{\romannumeral2}=\frac{1}{2}[\phi(x+at)+\phi(x-at)]+\frac{1}{2a}\int_{x-at}^{x+at}\psi(\alpha)d\alpha+\frac{1}{2a}\int_{0}^{t}\int_{x-a(t-\tau)}^{x+a(t-\tau)}f(\alpha,\tau)d\alpha\tau

注意点:积分的上下限,以及一些变量的代换

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值