恒定电场 工程电磁学 P15

电流的连续性方程

积分形式\oint_s \vec J \cdot d\vec S=-\frac{dq}{dt}=-\frac{-\int_v \rho dv}{dt} 

微分形式\nabla \cdot \vec J=0

电场强度的环路线积分

\oint_L \vec E \cdot d\vec l=0,\nabla \times \vec E=0

恒定电场的基本方程

\nabla \cdot \vec J=0,\nabla \times \vec E=0

如果是各向同性的介质 \vec J=\Gamma \vec E

衔接条件

 E_{1t}=E_{2t},J_{2n}=J_{1n}

我们可以推出 \frac{tan(\alpha_{1})}{tan(\alpha_2)}=\frac{\Gamma_{1}}{\Gamma_{2}}我们称之为电流折射的公式

恒定电场的边界条件

 根据\vec E=-\nabla \varphi

此时如果电导率不是空间坐标函数

我们可以得到拉普拉斯方程

\nabla^2 \varphi=0如果我们再结合边界条件

我们就可以解出这个电势


一种情况的分析

 

 因为\Gamma=0,我们知道\vec J_{2n}=0

又因为\vec J_{1n}=\vec J_{2n}

我们可以知道\vec J_{1n}=0

但是\vec E_{2n}\neq 0

并且由于电力线的发出,显然表面上分布了一层面自由电荷,面自由电荷起着精细的调节作用

面自由电荷的出现

 在这个模型下,可以看作

 刚开始看作电容,两端电流不等,但由于界面处面自由电荷的存在,可以调节电流,从而使最后的电流两端相等(也就是电阻模型)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值