电磁波的达朗贝尔方程 工程电磁场P25

我们有下述两个方程

\left\{ \begin{aligned} \nabla^2 \vec A -\mu \varepsilon \frac{\partial ^2 \vec A }{\partial t}=-\mu \vec J \\ \nabla^2 \varphi -\mu \varepsilon \frac{\partial ^2 \varphi }{\partial t}=-\frac{\rho}{\varepsilon} \\ \end{aligned} \right.

记住一定是线性介质

称为电磁波的达朗贝尔方程,是两个非齐次方程


我们下面介绍达朗贝尔方程的解

我们就用最简单的场源举例

 这个方程可以写成

\left\{ \begin{aligned} \nabla^2 \vec A -\mu \varepsilon \frac{\partial ^2 \vec A }{\partial t}=0(r \neq 0) \end{aligned} \right.

动态位是r和时间的函数

我们可以在球坐标系下展开成

\frac{\partial}{\partial r}(r^2 \frac{\partial \varphi}{\partial r})-\mu \varepsilon \frac{\partial^2 \varphi}{\partial t^2}=0(r\neq 0)

我们再做一下变换

\frac{\partial (r \varphi)}{\partial r^2}-\mu \varepsilon \frac{\partial^2 (r\varphi)}{\partial t^2}=0(r\neq 0)

现在如果在这个微分方程里面

r\varphi看作是一个整体

我们有两个解答

f_1(t-\frac{r}{v}),f_2 (t+\frac{r}{v}) ,v=\frac{1}{\sqrt{\mu \varepsilon}}

微分方程是一个二阶的,我们在构造通解的时候,需要两个特解

我们现在关心两个特解的物理含义

f_1(t-\frac{r}{v})

最后我们可以得到达朗贝尔解的公式

\varphi (\vec R, t)=\int_{V} \frac{\rho(\vec R^{\prime t -\frac{R}{V}})dV^{\prime}}{4 \pi \varepsilon R}

\vec A (\vec R, t)=\frac{\mu}{4 \pi}\int_{V} \frac{\vec J (\vec R^{\prime t -\frac{R}{V}})dV^{\prime}}{R}

称为达朗贝尔方程的解

说明场源在空间某一点的效应,不由当前的场源所决定,而是由前一时刻(说明场源的变化导致的影响需要时间来产生)

这个有什么样的好处呢?

如果现在构造场源,天线的接收强度一定,布置场源在其他范围相互抵消,在接收范围内增强

这就是一种天线

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值