电磁波理论中的达朗贝尔方程组

电磁波理论中的达朗贝尔方程组

达朗贝尔方程组是用矢量位 A ⃗ \vec A A 和标量位 φ \varphi φ 来计算电磁场中的电场强度 E ⃗ \vec E E 和磁场强度 H ⃗ \vec H H

矢量位 A ⃗ \vec A A

由于任意矢量的旋度的散度恒等于0, 以及磁感应强度 B ⃗ \vec B B 为无源场 ∇ ⋅ B ⃗ = 0 \nabla \cdot \vec B = 0 B =0, 因此 B ⃗ \vec B B 必为某矢量的旋度,定义该矢量为矢量位 A ⃗ \vec A A :
∇ × A ⃗ = B ⃗ ∇ ⋅ A + ε μ ∂ ∂ t φ = 0 \begin{align} \nabla \times \vec A &=\vec B \\ \nabla \cdot A + \varepsilon\mu \frac{\partial}{\partial t } \varphi&=0 \end{align} ×A A+εμtφ=B =0
公式2中的对矢量位 A ⃗ \vec A A 的散度的约束条件为洛伦兹约束条件.

在国际单位制中,矢量位 A ⃗ \vec A A 的单位为:特斯拉 ⋅ \cdot 米,用积分形式表示矢量位 A ⃗ \vec A A 与磁感应强度 B ⃗ \vec B B 的关系为:
∮ l A ⃗ ⋅ d l ⃗ = ∫ S B ⃗ ⋅ d S ⃗ = Φ \begin{align} \oint_l \vec A \cdotp d\vec l &= \int_S \vec B\cdotp d\vec S = \Phi\\ \end{align} lA dl =SB dS =Φ
即矢量位 A ⃗ \vec A A 的线积分为磁通量 ϕ \phi ϕ.

标量位 φ \varphi φ

即电位,国际单位制中的单位是伏特:
− ∇ φ = E ⃗ \begin{align} -\nabla \varphi = \vec E \end{align} φ=E

用矢量位和标量位表示电场强度 E ⃗ \vec E E

E ⃗ = − ∂ ∂ t A ⃗ − ∇ φ \begin{align} \vec E = -\frac{\partial }{\partial t}\vec A-\nabla \varphi \end{align} E =tA φ

达朗贝尔方程组

从矢量位及标量位的定义及麦克斯韦方程组,可以推出达朗贝尔方程组.
∇ 2 A ⃗ + ∇ × ∇ × A = ∇ ∇ ⋅ A ⃗ ∇ 2 A ⃗ + μ ( J ⃗ + ε ∂ ∂ t E ⃗ ) = ∇ ∇ ⋅ A ⃗ ∇ 2 A ⃗ + μ ε ∂ ∂ t E ⃗ = − u J ⃗ + ∇ ∇ ⋅ A ⃗ ∇ 2 A ⃗ + μ ε ∂ ∂ t ( − ∂ ∂ t A ⃗ − ∇ φ ) = − u J ⃗ + ∇ ∇ ⋅ A ⃗ ∇ 2 A ⃗ − μ ε ∂ 2 ∂ t 2 A ⃗ = − μ J ⃗ + ∇ ( ∇ ⋅ A ⃗ + μ ε ∂ ∂ t φ ) \begin{align} \nabla ^2 \vec A + \nabla \times \nabla \times A &= \nabla \nabla \cdot \vec A \\ \nabla ^2 \vec A + \mu (\vec J + \varepsilon \frac{\partial }{\partial t} \vec E) &= \nabla \nabla \cdot \vec A \\ \nabla ^2 \vec A + \mu \varepsilon \frac{\partial }{\partial t} \vec E &=-u \vec J + \nabla \nabla \cdot \vec A \\ \nabla ^2 \vec A + \mu \varepsilon \frac{\partial }{\partial t} (-\frac{\partial}{\partial t}\vec A-\nabla \varphi ) &=-u \vec J + \nabla \nabla \cdot \vec A\\ \nabla ^2 \vec A - \mu \varepsilon \frac{\partial ^2}{\partial t^2} \vec A &= -\mu \vec J + \nabla( \nabla \cdot \vec A +\mu \varepsilon \frac{\partial}{\partial t} \varphi)\\ \end{align} 2A +××A2A +μ(J +εtE )2A +μεtE 2A +μεt(tA φ)2A μεt22A =∇∇A =∇∇A =uJ +∇∇A =uJ +∇∇A =μJ +(A +μεtφ)

定义 A ⃗ \vec A A 满足洛伦兹条件 ∇ ⋅ A + ε μ ∂ ∂ t A ⃗ = 0 \nabla \cdot A + \varepsilon \mu\frac{\partial }{\partial t}\vec A=0 A+εμtA =0, 方程表示如下:
∇ 2 A ⃗ − ε μ ∂ 2 ∂ t 2 A = − μ J \begin{align} \nabla ^2 \vec A - \varepsilon\mu \frac{\partial ^2}{\partial t^2}A&=-\mu J \\ \end{align} 2A εμt22A=μJ
将(5)两边同时求散度,得到
∇ ⋅ ( ∇ φ ) + ∂ ∂ t ( ∇ ⋅ A ⃗ ) = − ∇ ⋅ E ⃗ = − ∇ ⋅ D ⃗ ε \begin{align} \nabla \cdot (\nabla \varphi) + \frac{\partial }{\partial t}(\nabla \cdot \vec A)&=-\nabla \cdot \vec E = -\frac{\nabla \cdot \vec D}{\varepsilon} \end{align} (φ)+t(A )=E =εD

将洛伦兹条件两边同时对时间 t t t 求导,得: ∂ ∂ t ( ∇ ⋅ A ) + ε μ ∂ 2 ∂ t 2 A ⃗ = 0 \frac{\partial }{\partial t}(\nabla \cdot A )+ \varepsilon \mu\frac{\partial^2 }{\partial t^2}\vec A=0 t(A)+εμt22A =0,将其代入(12)有:
∇ 2 φ − ε μ ∂ 2 ∂ t 2 A ⃗ = − ρ ε \begin{align} \nabla ^2 \varphi - \varepsilon \mu\frac{\partial^2 }{\partial t^2}\vec A&=-\frac{\rho}{\varepsilon} \end{align} 2φεμt22A =ερ

  • 10
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JERRY. LIU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值