文献调研(三):数据驱动的建筑能耗预测模型综述

本文概述了数据驱动的建筑能耗预测模型,重点关注预测方法、特征类型、数据预处理和评估指标。物理建模依赖详细数据,而数据驱动方法利用历史数据和机器学习算法(如SVM、ANN)。室外天气、室内环境、建筑特性、时间及占用行为等特征影响预测准确性。数据预处理包括清理、集成和转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A review of data-driven building energy consumption prediction studies

2018年Renewable and Sustainable Energy Reviews

摘要

本文对数据驱动的建筑能耗预测模型的研究进行了综述,重点介绍了预测范围、数据属性和数据预处理方法、用于预测的机器学习算法以及用于评估的性能指标。在此基础上,指出了数据驱动建筑能耗预测领域现有的研究差距和未来的研究方向。

介绍

在建筑能耗预测方面有两种主流方法:物理建模方法和数据驱动方法。
物理模型(也称为工程方法或白盒模型)依赖热力学规则进行细化的能量建模和分析,利用物理模型的建筑能耗预测仿真软件有EnergyPlus、eQuest、Ecotect等,它们基于建筑的构造和环境参数(如建筑额构造细节、运营时间表、暖通空调设计信息、以及气候、天空和日光/阴影信息)计算建筑能耗。这种模型在预测时很容易受到用户数据缺乏的影响。
数据驱动方法是从历史/可用数据中学习,不需要以上充足的各种类型的数据。
本文综述了数据驱动的建筑能耗预测研究,这些研究利用了机器学习算法,包括支持向量机(SVM)、人工神经网络(ANN)、决策树和其他统计算法。

方法

下图是本文总结的一些相关工作涉及的策略:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值