系列文章目录
【数据驱动预测控制1】数据驱动预测控制的概念
【数据驱动预测控制2】Willems基本引理
【数据驱动预测控制3】数据驱动预测控制算法及仿真
数据驱动预测控制(DDPC) 是从模型预测控制(MPC) 的基础上提出来的,首先我们来了解一下为什么要提出数据驱动预测控制。
一.模型预测控制的局限性
模型预测控制(MPC)已成为许多应用领域的先进控制方法,包括(但不限于)机电一体化、机器人、电力电子、汽车系统和智能基础设施。它受欢迎的原因有几个,理解它处理约束的能力,设计预测控制操作和提供最佳性能。同时,设计MPC的主要问题之一在于其对预测模型的内在依赖,从第一性原理出发可能会很麻烦,特别是当需要控制复杂的系统时,被控对象的模型往往难以获取,这将导致无法利用传统的MPC来控制被控对象。例如考虑下面的线性时不变系统:
x
(
k
+
1
)
=
A
x
(
k
)
+
B
u
(
k
)
y
(
k
)
=
C
x
(
k
)
+
D
u
(
k
)
(1)
\pmb x(k+1)=\pmb{Ax}(k)+\pmb {Bu}(k)\\ \pmb y(k)=\pmb{Cx}(k)+\pmb {Du}(k) \tag{1}
x(k+1)=Ax(k)+Bu(k)y(k)=Cx(k)+Du(k)(1)
其中
x
(
k
)
∈
R
n
\pmb{x}(k)\in R^n
x(k)∈Rn为系统的状态变量,
y
(
k
)
、
u
(
k
)
\pmb y(k)、\pmb u(k)
y(k)、u(k)分别为系统的输入输出,
A
\pmb A
A、
B
\pmb B
B、
C
\pmb C
C和
D
\pmb D
D为系统矩阵。
如果要利用传统的MPC算法对系统(1)进行控制,那么
A
\pmb A
A、
B
\pmb B
B、
C
\pmb C
C和
D
\pmb D
D必须要是已知的,否则无法建立出预测模型。因此,为了克服传统MPC的这一个局限性,数据驱动预测控制得以产生。
二.数据驱动预测控制
数据驱动预测控制(DDPC)是一种基于数据而非传统数学模型的控制方法,它不直接利用系统模型就可以达到控制目的。
1.数据预测控制的分类
DDPC可以分为两类,一种是间接DDPC,另一种是直接DDPC。
i.间接数据驱动预测控制
间接DDPC是首先使用系统辨识方法来辨识出被控对象的模型,然后,再把学习到的模型利用到MPC问题中。尽管受益于基于模型的保证,但这种方法往往容易对建模错误敏感,因此要求设计者更多地关注系统辨识阶段(例如,选择正确的模型结构),而不是实际的控制设计。此外,系统辨识技术的目标通常是获得可能的最佳预测器,而往往忽略其最终使用。常见的间接DDPC有子空间预测控制(SPC)和一些基于神经网络的模型预测控制。
ii.直接数据驱动预测控制
直接DDPC方法直接依赖于原始(或稍微预处理的)数据来预测受控系统的未来响应,而不需要在控制设计之前进行任何明确的模型识别。因此,直接DDPC方法直接利用可用的数据来实现控制目标。例如无模型预测控制和基于Willems基本引理的数据驱动预测控制。基于 Willems基本引理的数据驱动预测控制是该系列文章后续着重介绍的方法。
2.数据获取与建模
DDPC少不了数据的获取,大多DDPC都是利用被控对象的输入输出数据进行控制。
数据收集: 首先,需要收集受控系统的输入输出数据。这些数据可以是离线数据,也可以是实时在线数据,它们反映了系统的动态特性和行为。
数据建模: 利用收集到的数据,通过数据驱动的方法建立系统的预测模型。这个模型不需要明确的数学表达式或物理机理,而是直接基于数据来预测系统的未来输出。常用的数据驱动建模方法包括子空间法、神经网络、支持向量机等。
建立好预测模型之后,就可以通过MPC的思想对被控对象进行控制。
3.特点与优势
不依赖精确模型: 数据驱动预测控制不依赖于受控系统的精确数学模型,因此适用于那些难以建立准确模型的复杂系统。
实时性与适应性: 由于基于实时数据进行建模和预测,该方法能够实时地反映系统的动态变化,并具有一定的自适应能力。
灵活性: 数据驱动预测控制可以与多种优化算法和预测模型相结合,以适应不同的控制需求和系统特性。
在后续文章将介绍一种基于 Willems基本引理的数据驱动预测控制。