
人工智能
文章平均质量分 82
人工智能学习
Uaena.&
这个作者很懒,什么都没留下…
展开
-
数字图像与机器视觉基础补充(1)
目录一、图片格式(一)BMP格式(二)JPEG格式(三)GIF格式(四)PNG格式二、实践操作(一)比较不同位深度BMP文件(三)比较不同格式压缩比三、图像处理编程(一)奇异函数分解(SVD)(二)用开闭运算(腐蚀-膨胀),检测出2个样本图像中硬币、细胞的个数(三)用图像梯度、开闭、轮廓运算等,对图片中的条形码进行定位提取,再调用条码库获得条码字符参考文献1.实践操作。1)用图画板或其他图像编辑软件(Photoshop/GIMP、cximage、IrfanView等)打开一个彩色图像文件,将其分别保存原创 2021-12-23 09:22:52 · 188 阅读 · 0 评论 -
SVM算法应用综合练习(2)--人脸表情识别
目录一、二、三、参考文献利用所提供的人脸微笑数据集(genki4k),训练一个微笑/非微笑识别模型,完成对人脸图片的微笑与非的识别,输出训练(train)和测试(test)的精度值(F1-score和ROC);然后保存这个模型,将其应用到人脸实时采集视频的微笑检测中,当检测到微笑人脸,视频窗口输出“smile”,否则输出“non smile”;当识别结果准确时,按“s”键,保存10张对应分类的图片到本地目录。人脸表情特征的选择不限,可以是HoG、SIFT、dlib(68个关键点), 训练算法采用SVM原创 2021-12-21 22:42:35 · 173 阅读 · 0 评论 -
数字图像与机器视觉基础补充(2)
目录一、彩色图像转换二、车牌数字分割(一)图片(二)完整代码(三)结果参考文献一、彩色图像转换二、车牌数字分割(一)图片图片(目录不能有中文,不然后面会出错)(二)完整代码#导入包import osimport shutilimport cv2import numpy as npfile_path = "D:/jupyter/car/picture/"licenses = os.listdir(file_path)for license in licenses: pat原创 2021-12-15 22:17:49 · 3675 阅读 · 0 评论 -
SVM深入理解
目录一、重做例子二、处理三级目录一、重做例子%pylabimport pandasplot(arange(10)) import matplotlib.pyplot as pltimport numpy as npfrom sklearn import datasetsfrom sklearn.preprocessing import StandardScalerfrom sklearn.svm import LinearSVCiris=datasets.load_iris()X=ir原创 2021-11-17 23:06:27 · 327 阅读 · 0 评论 -
LibSVM制作鸳尾花数据集&(dlib+opencv+python)人脸识别
目录一、LibSVM学习(一)从LibSVM官方网站下载最新版 LibSVM(二)了解LibSVM 工具的训练数据集的格式和训练获得的决策函数模型(model)的格式(三)用LibSVM工具分别进行线性、多项式、高斯核这三种分类训练二、人脸识别数据集的建立(一)采集自己的脸部图片20张(二)采集对应20张图片的68个特征点数组(三)通过20个特征,计算出平均(mean)特征数组一、LibSVM学习(一)从LibSVM官方网站下载最新版 LibSVM下载地址:官网(二)了解LibSVM 工具的训练数原创 2021-11-17 22:38:15 · 1924 阅读 · 0 评论 -
SVM深入理解&人脸特征提取(python3+opencv3.4+dlib库编程)
目录一、二、三、参考文献一、二、三、参考文献原创 2021-11-13 15:17:00 · 2406 阅读 · 0 评论 -
决策树挑出好西瓜
目录原创 2021-11-06 21:54:45 · 4572 阅读 · 1 评论 -
线性判别准则与线性分类编程实践
学习线性判别准则(LDA)和线性分类算法(支持向量机,SVM)。采用Sklearn库1、编程生成模拟数据集,进行LDA算法练习;2、对月亮数据集进行SVM分类,分别采用线性核、多项式核和高斯核以及不同的参数(比如惩罚系数C),对比分析结果。原创 2021-11-05 20:01:04 · 378 阅读 · 1 评论 -
多元线性回归算法预测房价
目录一、二、针对房屋数据集“house_prices.csv”的多元线性回归(基于统计分析库statsmodels)三、用Excel重做上面的多元线性回归,求解回归方程四、用机器学习库Sklearn库重做上面的多元线性回归,对三者的结果进行对比分析参考文献一、二、针对房屋数据集“house_prices.csv”的多元线性回归(基于统计分析库statsmodels)三、用Excel重做上面的多元线性回归,求解回归方程四、用机器学习库Sklearn库重做上面的多元线性回归,对三者的结果进行对比分析参原创 2021-11-05 17:16:51 · 435 阅读 · 0 评论 -
初识线性回归
目录一、线性回归1.基本含义2.拟合方程二、用excel做线性回归分析(一)操作步骤(二)实例练习三、用jupyter编程和最小二乘法做线性回归分析四、用jupyter编程,借助skleran做线性回归分析五、总结一、线性回归1.基本含义在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多原创 2021-10-01 20:50:14 · 1262 阅读 · 0 评论