线性判别准则与线性分类编程实践

一、概论

(一)线性判别准则(LDA)

线性判别分析LDA(Linear Discriminant Analysis)又称为Fisher线性判别,是一种监督学习的降维技术,也就是说它的数据集的每个样本都是有类别输出的,这点与PCA(无监督学习)不同。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。

1.Fisher准则

  • 基本思想:对于两个类别线性分类的问题,选择合适的阈值,使得Fisher准则函数达到极值的向量作为最佳投影方向,与投影方向垂直的超平面就是两类的分类面,使得样本在该方向上投影后,达到最大的类间离散度和最小的类内离散度。
  • Fisher线性判别并不对样本的分布进行任何假设,但在很多情况下,当样本维数比较高且样本数也比较多时,投影到一维空间后样本接近正态分布,这时可以在一维空间中用样本拟合正态分布,用得到的参数来确定分类阈值。

2.感知机准则

  • 基本思想:对于线性判别函数,当模式的维数已知时,判别函数的形式实际上就已经确定下来,线性判别的过程即是确定权向量? 。感知机是一种神经网络模型,其特点是随意确定判别函数初始值,在对样本分类训练过程中,针对分类错误的样本不断进行权值修正,逐步迭代直至最终分类符合预定标准,从而确定权向量值。可以证明感知机是一种收敛算法,只要模式类别是线性可分的,就可以在有限的迭代步数里求出权向量的解。
  • 优点:简单、便于实现。
    缺点:结果不唯一,在线性不可分情况下不收敛。

3.最小二乘准则

  • 最小二乘准则(least squares criterion)进行最小二乘平差计算的一个基本原则。它是求解不定线性方程组的一个附加条件。在任何平差计算中,所列出的方程式的个数,总是少于方程中所包含的未知量的个数,因此其解不惟一在最小二乘准则下求解,可以得到一组惟一解。
  • 若在平差中,只有观测值为随机量时,最小二乘准则为VTPV=min
  • 如果不仅仅观测值为随机量,而且参数也是随机量时,则最小二乘准则为VTPV+.xTP}.x = min,并称它为广义最小二乘准则。
  • V是观测向量的改正数向量,P是观测向量的权阵,x是参数向量的改正数向量,P二是参数向量的权阵。

(二)线性分类算法(支持向量机,SVM)

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。

SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如下图所示,w·x+b=0即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。
在这里插入图片描述

二、模拟数据集LDA算法练习

1.导入包

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as lda#导入LDA算法
from sklearn.datasets._samples_generator import make_classification #导入分类生成器
import matplotlib.pyplot as plt #导入画图用的工具
import numpy as np
import pandas as pd

2.获得数据集并进行训练

x,y=make_classification(n_samples=500,n_features=2,n_redundant=0,n_classes=2,n_informative=1,n_clusters_per_class=1,class_sep=0.5,random_state=100)
"""
n_features :特征个数= n_informative() + n_redundant + n_repeated
n_informative:多信息特征的个数
n_redundant:冗余信息,informative特征的随机线性组合
n_repeated :重复信息,随机提取n_informative和n_redundant 特征
n_classes:分类类别
n_clusters_per_class :某一个类别是由几个cluster构成的

"""
plt.scatter(x[:,0],x[:,1], marker='o', c=y)
plt.show()
x_train=x[:60, :60]
y_train=y[:60]
x_test=x[40:, :]
y_test=y[40:]

在这里插入图片描述
3.将数据集分为训练集和测试集,分类比为6:4,训练完之后利用测试集获得准确率

#分为训练集和测试集,进行模型训练并测试
x_train=x[:300, :300]
y_train=y[:300]
x_test=x[200:, :]
y_test=y[200:]
lda_test=lda()
lda_test.fit(x_train,y_train)
predict_y=lda_test.predict(x_test)#获取预测的结果
count=0
for i in range(len(predict_y)):
    if predict_y[i]==y_test[i]:
        count+=1
print("预测准确个数为"+str(count))
print("准确率为"+str(count/len(predict_y)))

在这里插入图片描述

三、月亮数据集SVM分类

(一)线性核

1.导入包

# 导入月亮数据集和svm方法
#这是线性svm
from sklearn import datasets #导入数据集
from sklearn.svm import LinearSVC #导入线性svm
from matplotlib.colors import ListedColormap
from sklearn.preprocessing import StandardScaler

2.获取数据

data_x,data_y=datasets.make_moons(noise=0.15,random_state=777)#生成月亮数据集
# random_state是随机种子,nosie是方
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
data_x=data_x[data_y<2,:2]#只取data_y小于2的类别,并且只取前两个特征
plt.show()

在这里插入图片描述
3.对数据进行标准化练习

scaler=StandardScaler()# 标准化
scaler.fit(data_x)#计算训练数据的均值和方差
data_x=scaler.transform(data_x) #再用scaler中的均值和方差来转换X,使X标准化
liner_svc=LinearSVC(C=1e9,max_iter=100000)#线性svm分类器,iter是迭达次数,c值决定的是容错,c越大,容错越小
liner_svc.fit(data_x,data_y)

4.边界绘制函数

# 边界绘制函数
def plot_decision_boundary(model,axis):
    x0,x1=np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1))
    # meshgrid函数是从坐标向量中返回坐标矩阵
    x_new=np.c_[x0.ravel(),x1.ravel()]
    y_predict=model.predict(x_new)#获取预测值
    zz=y_predict.reshape(x0.shape)
    custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    plt.contourf(x0,x1,zz,cmap=custom_cmap)

5.画图并显示参数和截距

#画图并显示参数和截距
plot_decision_boundary(liner_svc,axis=[-3,3,-3,3])
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1],color='red')
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1],color='blue')
plt.show()
print('参数权重')
print(liner_svc.coef_)
print('模型截距')
print(liner_svc.intercept_)

在这里插入图片描述

(二)多项式核

1.导入包

# 导入月亮数据集和svm方法
#这是多项式核svm
from sklearn import datasets #导入数据集
from sklearn.svm import LinearSVC #导入线性svm
from sklearn.pipeline import Pipeline #导入python里的管道
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler,PolynomialFeatures #导入多项式回归和标准化

2.获取数据集

data_x,data_y=datasets.make_moons(noise=0.15,random_state=777)#生成月亮数据集
# random_state是随机种子,nosie是方
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
data_x=data_x[data_y<2,:2]#只取data_y小于2的类别,并且只取前两个特征
plt.show()

在这里插入图片描述
3.利用pipeline进行一体化编程

 def PolynomialSVC(degree,c=10):#多项式svm
    return Pipeline([
            # 将源数据 映射到 3阶多项式
            ("poly_features", PolynomialFeatures(degree=degree)),
            # 标准化
            ("scaler", StandardScaler()),
            # SVC线性分类器
            ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42,max_iter=10000))
        ])

4.进行模型训练并画图

# 进行模型训练并画图
poly_svc=PolynomialSVC(degree=3)
poly_svc.fit(data_x,data_y)
plot_decision_boundary(poly_svc,axis=[-1.5,2.5,-1.0,1.5])#绘制边界
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1],color='red')#画点
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1],color='blue')
plt.show()
print('参数权重')
print(poly_svc.named_steps['svm_clf'].coef_)
print('模型截距')
print(poly_svc.named_steps['svm_clf'].intercept_)

在这里插入图片描述

(三)高斯核

1.导入包

## 导入包
from sklearn import datasets #导入数据集
from sklearn.svm import SVC #导入svm
from sklearn.pipeline import Pipeline #导入python里的管道
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler#导入标准化

2.获取数据

def RBFKernelSVC(gamma=2.0):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('svc',SVC(kernel='rbf',gamma=gamma))
    ])

3.进行模型训练画出图形

svc=RBFKernelSVC(gamma=100)#gamma参数很重要,gamma参数越大,支持向量越小
svc.fit(data_x,data_y)
plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1],color='red')#画点
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1],color='blue')
plt.show()

在这里插入图片描述

四、总结

LDA优点

  • 在降维过程中可以使用类别的先验知识经验,而像PCA这样的无监督学习则无法使用类别先验知识。
  • LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优。

SVM优点

  • 不需要很多样本,不需要有很多样本并不意味着训练样本的绝对量很少,而是说相对于其他训练分类算法比起来,同样的问题复杂度下,SVM需求的样本相对是较少的。并且由于SVM引入了核函数,所以对于高维的样本,SVM也能轻松应对。
  • 结构风险最小。这种风险是指分类器对问题真实模型的逼近与问题真实解之间的累积误差。
  • 非线性,是指SVM擅长应付样本数据线性不可分的情况,主要通过松弛变量(也叫惩罚变量)和核函数技术来实现,这一部分也正是SVM的精髓所在。

参考文献

线性判别分析(LDA)准则
支持向量机(SVM)——原理篇
线性判别准则(LDA)与线性分类编程(SVM)实践

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值