[论文精读]Denoising Diffusion Probabilistic Models

发布链接:http://arxiv.org/abs/2006.11239

中文标题:去噪扩散概率模型

会议:34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada

阅读原因:需要知道/理解扩散概率模型的实现机理

推荐阅读:diffusion model(一):DDPM技术小结 (denoising diffusion probabilistic) | 莫叶何竹🍀

论文提出了一种新的生成模型,称为去噪扩散概率模型,该模型基于不可逆热力学的原理来生成高质量的图像。

1. 研究背景

深度生成模型近年来在图像和音频的合成上取得了显著进展,如生成对抗网络(GANs)、变分自编码器(VAEs)和自回归模型等。然而,这些模型各自存在局限性,比如GANs易于模式崩溃、训练不稳定等问题。

该论文提出的扩散模型是一种基于马尔可夫链的生成模型,通过反向去噪来逐步恢复真实图像。其主要灵感来自于非平衡热力学中的扩散过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值