发布链接:http://arxiv.org/abs/2006.11239
中文标题:去噪扩散概率模型
会议:34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada
阅读原因:需要知道/理解扩散概率模型的实现机理
推荐阅读:diffusion model(一):DDPM技术小结 (denoising diffusion probabilistic) | 莫叶何竹🍀
论文提出了一种新的生成模型,称为去噪扩散概率模型,该模型基于不可逆热力学的原理来生成高质量的图像。
1. 研究背景
深度生成模型近年来在图像和音频的合成上取得了显著进展,如生成对抗网络(GANs)、变分自编码器(VAEs)和自回归模型等。然而,这些模型各自存在局限性,比如GANs易于模式崩溃、训练不稳定等问题。
该论文提出的扩散模型是一种基于马尔可夫链的生成模型,通过反向去噪来逐步恢复真实图像。其主要灵感来自于非平衡热力学中的扩散过