[论文阅读]Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

http://arxiv.org/abs/2401.12070

ICML2024

可以认为这篇文章就是研究如何判断一个文段是不是AIGC。

核心:引入了交叉困惑度,同时使用两个模型来获取困惑度。其中一个模型直接对目标文本计算困惑度,第二个模型对第一个模型计算困惑度。

1.研究背景和问题:

(1)实际应用场景和问题提出

随着大型语言模型(如 GPT-4、LLaMA、Falcon 等)的快速发展,生成式AI模型被广泛应用于内容创作、自动写作、对话系统等多个领域。然而,生成模型带来了诸多问题,尤其是文本的真实性和来源的验证。

  • 学术不诚信:学生可能借助生成模型撰写作业或论文,影响学术公平。
  • 虚假信息传播:生成模型可能被用于制造虚假新闻或误导性评论。
  • 内容滥用: 生成的恶意文本可能用于网络攻击、垃圾信息和仇恨言论的传播。

(2)问题的研究意义

生成文本检测的研究具有重要的社会和应用意义,主要体现在:

  • 防止学术剽窃:防止学生通过生成模型提交机器写作的论文。
  • 打击虚假信息:提高平台内容审核的准确性,避免虚假内容的传播。
  • 提升文本生成透明度:对生成模型的输出进行审查,确保其在合规和道德框架内使用。

(3)问题的研究现状

现有的生成文本检测方法大致可以分为两类:

  • 基于困惑度的方法:直接计算文本在语言模型中的困惑度,机器生成文本通常困惑度较低。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值