目录
方式一:在Hugging Face HUb下载(挂VPN访问,建议)
一、ChatGLM-6B介绍
ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答,更多信息请参考我们的博客。欢迎通过 chatglm.cn 体验更大规模的 ChatGLM 模型。
为了方便下游开发者针对自己的应用场景定制模型,同时实现了基于 P-Tuning v2 的高效参数微调方法 (使用指南) ,INT4 量化级别下最低只需 7GB 显存即可启动微调。
二、环境准备
1. 硬件环境
如果需要在 cpu 上运行量化后的模型,还需要安装 gcc 与 openmp。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 TDM-GCC 时勾选 openmp。 Windows 测试环境 gcc 版本为 TDM-GCC 10.3.0, Linux 为 gcc 11.3.0。
2. TDM-GCC安装
参考博客:Windows安装tdm-gcc并勾选openMP(详细图文)-CSDN博客
3.git安装
百度安装
4.Anaconda安装
三、模型安装
1.下载ChatGLM-6b和环境准备
下载地址:https://github.com/THUDM/chatglm-6B
从 Github 下载 ChatGLM-6B 仓库,然后进入仓库目录使用 pip 安装依赖,
其中 transformers 库版本推荐为 4.27.1,但理论上不低于 4.23.1 即可。
方式一:git命令
(1)在D盘打开命令提示窗口,默认下载到当前目录
git clone https://github.com/THUDM/ChatGLM-6B
(2)切换到chatGLM-6B目录
cd ChatGLM-6B
(3)创建conda的虚拟环境,指定Python的版本
conda create -n torch python=3.10
(4)激活环境
conda activate torch
(5)下载依赖包
pip install -r requirements.txt
方式二:手动下载
(1)在github地址:https://github.com/THUDM/chatglm-6B
解压到你自己的目录
(2)切换到ChatGLM-6B目录
cd ChatGLM-6B
(3)创建conda的虚拟环境,指定Python的版本