Windows环境下搭建chatGLM-6B-int4量化版模型(图文详解-成果案例)

目录

一、ChatGLM-6B介绍

二、环境准备

1. 硬件环境

2. TDM-GCC安装

3.git安装

4.Anaconda安装

三、模型安装

1.下载ChatGLM-6b和环境准备

方式一:git命令

方式二:手动下载

2.下载预训练模型

方式一:在Hugging Face HUb下载(挂VPN访问,建议)

(1)git命令行下载:

 (2)手动下载

方式二:在魔塔社区下载(亲测速度快,不建议)

git命令行下载

 3.模型使用

1.命令行版:cli_demo.py

2.Web版本:(web_demo.py)

 3.API版本:api.py

四、遇到的问题

五、成果展示


一、ChatGLM-6B介绍

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答,更多信息请参考我们的博客。欢迎通过 chatglm.cn 体验更大规模的 ChatGLM 模型。

为了方便下游开发者针对自己的应用场景定制模型,同时实现了基于 P-Tuning v2 的高效参数微调方法 (使用指南) ,INT4 量化级别下最低只需 7GB 显存即可启动微调。

二、环境准备

1. 硬件环境

如果需要在 cpu 上运行量化后的模型,还需要安装 gcc 与 openmp。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 TDM-GCC 时勾选 openmp。 Windows 测试环境 gcc 版本为 TDM-GCC 10.3.0, Linux 为 gcc 11.3.0。 

2. TDM-GCC安装

参考博客:Windows安装tdm-gcc并勾选openMP(详细图文)-CSDN博客

3.git安装

百度安装

4.Anaconda安装

超详细Anaconda安装教程-CSDN博客

三、模型安装

1.下载ChatGLM-6b和环境准备

下载地址:https://github.com/THUDM/chatglm-6B

从 Github 下载 ChatGLM-6B 仓库,然后进入仓库目录使用 pip 安装依赖,

其中 transformers 库版本推荐为 4.27.1,但理论上不低于 4.23.1 即可。

方式一:git命令

(1)在D盘打开命令提示窗口,默认下载到当前目录

git clone https://github.com/THUDM/ChatGLM-6B

(2)切换到chatGLM-6B目录

cd ChatGLM-6B

(3)创建conda的虚拟环境,指定Python的版本

conda create -n torch python=3.10

(4)激活环境

conda activate torch

(5)下载依赖包

pip install -r requirements.txt

方式二:手动下载

(1)在github地址:https://github.com/THUDM/chatglm-6B

 解压到你自己的目录

(2)切换到ChatGLM-6B目录

cd ChatGLM-6B

(3)创建conda的虚拟环境,指定Python的版本

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值