大家好,最近两年大语言模型风靡全球,最近,不少开源大模型,将模型部署到自己的电脑上,用个性化的数据微调想必是不少人的愿望,这次,让我来分享从hugging face上下载部署chatglm3-6b中的经验。
1.硬件准备
具体参考这个:
结论:一般RTX 3060 6GB显卡是最小模型的门槛
补充“7B”指的是7亿参数。大语言模型参数量是指模型中可调整的参数的数量,通常用来衡量模型的大小和复杂程度,一般参数量越大的模型性能越强。商业化的模型一般在10B-100B之间,chatgpt4 13.3B。
我的配置:(查看方法:联想电脑管家,鲁大师)
很勉强,为了照顾显卡不行的小伙伴,这个帖子先用CPU进行部署
2.运算环境准备
2.1 安装anaconda
什么?你还不知道anaconda是啥?Conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换。
网上已经有很多下载安装教程,比如:https://blog.csdn.net/ABV09876543210/article/details/101194476
https://zhuanlan.zhihu.com/p/647523947
备注:现在最好python版本安装到3.8或者3.9,版本过低后面安装库的时候库的版本会过低。
我的报错解析:
- 如果你已经安装,但在cmd使用conda 却报没有此命令,可以看看是不是没加入你的环境变量
如何配置环境变量?Win11方法在此: https://blog.csdn.net/weixin_46483785/article/details/131163456
2.2 配置软件环境
用conda create -n env python==3.8 命令创建名为“env”的新虚拟环境,用activate env或者conda activate env进入新建的虚拟环境(前面会出现新环境的名字)
并在新虚拟环境中使用conda下载(下载方法在刚刚conda教程中有)transformers>=4.38.2(为啥是这个或者以上的版本?后面会考!),tensorflow和pytorch。Pytorch安装比较麻烦,分为CPU版本和GPU版,具体教程看这里:https://www.jb51.net/python/302744e4p.htm
我是使用这个命令安装CPU版的 #安装pytorch conda install pytorch torchvision torchaudio cpuonly -c pytorch。使用conda list可以看见所有下载了的库:
然后虚拟环境导入到jupyter中(这时要保证自己在新的环境中!) https://blog.csdn.net/m0_56075892/article/details/130005168 首先要确保环境中有ipykernel ipython 库,没有的话进行安装
安装ipykernel ipython
pip install ipykernel ipython
查看jupyter下面有多少个kernels
jupyter kernelspec list
ipython kernel install --user --name pytorch1.6(虚拟环境名字)
最后,进入jupyter notebook,将kernel 调整成对应的虚拟环境将验证安装好了的包
新建一个notebook文档,然后输入 import torch import transformers 如果没有报错说明你已经安装好了。
3.下载大模型:
Hugging face官网是要科学上网滴:https://huggingface.co/ 在网站上chatglm3的官方下载方式是:from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True) model = AutoModel.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True).half().cuda()
按照它的代码输入,你就会报这个错:
意思是:被墙了
这咋办?解决方法:国内镜像!https://hf-mirror.com/ https://aliendao.cn/#/ #我用的是这个
将所有文件下载到本地后,新建文件夹,命名,在本地加载 https://hf-mirror.com/
https://aliendao.cn/#/
例如,我将其放在这个文件夹下:
然后通过cd函数将工作路径调整到models文件夹后,就可以导入模型了:
from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True) model = AutoModel.from_pretrained(“THUDM/chatglm3-6b”, trust_remote_code=True).half() model = model.eval()
response, history = model.chat(tokenizer, “你好”, history=[]) print(response) 出现这样一句话说明你成功啦!你好!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
如果报错:DLL load failed while importing _imaging: 找不到指定的模块的解决方法 是你安装的库的版本有问题,解决方法可以详见这个帖子:https://blog.csdn.net/qq_45510888/article/details/121446878
4.更简单,更快的部署方法:
一键下载安装!一键本地部署!
教程:https://zhuanlan.zhihu.com/p/672400265
支持以下模型,缺点:没有中文模型!:
这期到这里结束了,读到这里你也发现,这个不是一个纯粹的原创帖,更多是前人经验的总结归纳和我在走前人教程中遇到的问题,希望对大家有帮助。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓