论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels

一、ABSTRACT—摘要

        标题:Deep-learning seismic full-waveform inversion for realistic structural
models(用于真实结构模型的深度学习地震全波形反演)

        作者:Bin Liu1, Senlin Yang2, Yuxiao Ren2, Xinji Xu3, Peng Jiang2, and Yangkang Chen4(和SeisInvNet有共同作者,应该是同一个实验团队)

        编辑于2019年7月1日收到手稿;于2020年8月27日收到修订稿;于2020年10月4日提前出版;于2021年1月4日在线出版。

        速度模型反演是地震勘探的重要任务之一。在传统的速度反演方法中,全波形反演(FWI)可以获得最高的分辨率,但它严重依赖于初始模型,计算量大。近年来,已经提出了大量基于深度学习(DL)的速度模型反演方法。这些基于DL的方法中的一个关键组成部分是包含不同速度模型的大型训练集。我们已经开发了一种方法来构建一个现实的结构模型的DL网络。我们用于创建致密层/断层/盐体模型的压缩波速度建模方法可以自动构建大量的模型,而无需花费太多的人力,这对于深度学习网络非常有意义。此外,为了提高对这些实际构造模型的反演效果,我们不仅使用共炮点道集,还从共接收点道集中提取特征。通过大量的真实结构模型、合理的数据采集方法和适当的网络设置,我们提出的反演框架可以得到更普遍的结果,并在独立的测试数据集上证明了其有效性。通过对密层模型、断层模型和盐体模型的对比分析,验证了该方法的可靠性,并为实际情况下选择最优反演策略提供了指导。

二、INTRODUCTION—介绍

        从地震数据中精确地反演地震速度模型是地震勘探中的一项重要任务。速度模型在高质量、高分辨率地震勘探中起着至关重要的作用,准确的速度模型可以为逆时偏移提供更好的研究基础(Baysal et al.,1983),叠前深度偏移(Mittet等人,1995)和其它成像方法(Bunks等人,1995年)。随着地震勘探条件和要求的日益复杂,对速度估计的精度要求也越来越高。为了获得真实速度模型的良好预测,已经从不同的角度开发了许多方法,例如基于正动校正的速度分析(Dunkin和Levin,1973; Alkhalifah和Tsvankin,1995)、波动方程层析成像(Woodward,1992)和全波形反演(FWI)(Lailly和Bednar,1983; Tarantola,1984)方法。近年来,随着机器学习技术的发展,越来越多的数据驱动方法被用于速度模型反演。

        鉴于速度模型在地震勘探中的重要性,研究人员在速度反演方法上投入了大量的精力(Cohen和Bleistein,1979)。Lailly和Bednar(1983)和Tarantola(1984)首先提出了基于广义最小二乘准则的地震FWI的思想,为地震速度反演提供了一个总体框架。与传统的层析成像方法不同,FWI要求对波的传播进行高精度的建模,以便充分利用叠前地震波场的运动学和动力学信息。此外,由于FWI的高度非线性特性,它对初始模型的依赖性很强,容易陷入局部极小值。为了解决局部最小值问题,Bunks等人(1995)提出了时间域的密集尺度FWI,其中在不同频率处使用地震数据信息以改善反演效果。之后,频域中的FWI方法(Pratt和Worthington,1990; Pratt,1999; Pratt和Shipp,1999; Hu等人,2009 b)和拉普拉斯域(Shin和Cha,2008; Shin和Ho Cha,2009)已经被提出,并取得了令人满意的结果。此外,最近已经引入了方向总变分方法来解决局部最小值问题(Qu等人,2019年)。随着深入的研究,FWI方法在各个方面得到了进一步的扩展,包括粘弹性介质(Yang等人,2009)和联合反演(Hu等人,2009 a;Khan等人,2010),并且它们逐渐被应用于现场数据(Sirgue等人,2010年)。然而,FWI方法的局限性,例如初始模型的影响,仍然存在,并且需要新的方法来解决这些问题(Chen等人,2016年)。

        随着机器学习技术的不断发展,数据驱动方法为速度模型反演提供了新的思路。其中,深度学习(DL)成为最重要的研究课题之一,越来越多的领域开始引入DL方法来解决相关问题。经过几十年的发展,神经网络已经从最初的神经元形式发展到最近的深度神经网络架构。神经网络的概念可以追溯到McCulloch和Pitts(1943)的研究,其重点是神经计算方法。Rosenblatt(1958)创造性地提出了感知器的概念,开辟了神经网络算法的研究。Rumelhart等人(1988)提出了反向传播神经网络。但是由于对计算资源的巨大需求,神经网络的研究大多停留在理论阶段。随着世纪计算能力的极大提高,神经网络算法通过一系列论文的发表(欣顿et al.,2006,2012 a; Lecun等人,2015年)。随着DL的发展和相关技术的爆发,更多的领域开始使用这种方法来解决问题(Deng and Yu,2014),比如计算机视觉(Eschlodimos et al.2018),医学诊断(Esteva et al.,2017)和语音识别(欣顿等人,2012年a)。

        在地震勘探界,研究使用DL方法,并取得了比传统方法更好的效果。Röth和Tarantola(1994)首次将神经网络方法应用于地震资料一维速度模型的反演,证实了神经网络在速度模型反演中的适用性。莫斯利等人(2018)应用WaveNet进行基于深时转换数据的一维速度模型反演。Araya-Polo等人(2018)通过卷积神经网络(CNN)实现速度模型重建,用于从叠前数据计算的速度谱立方体。对于层模型和断层模型,Wu和Lin(2018)使用带有编码器-解码器的CNN(称为InversionNet)来实现相应的速度模型构建。Yang和Ma(2019)使用完全卷积神经网络从具有高斯噪声的叠前数据中重建速度模型,特别是盐模型。特别是,他们通过使用迁移学习方法进一步训练SEG数据集,结果优于FWI。上述深度神经网络基于现有网络方法的应用,并应用于地震数据集。在深入分析地震数据特征的基础上,Li等人(2020)进一步设计和优化了CNN和全连接网络,然后他们提出了SeisInvNet,取得了比InversionNet更好的效果。一些利用神经网络改进FWI的方法被提出,计算效率和反演结果都有显著提高(Ren et al.,2020年; Sun等人,2020年)。而且,在地震数据处理的研究中,DL已经成功应用,例如地震数据去噪(Yu et al.,2018年; Chen等人,2019; Saad和Chen,2020),故障识别(Wu等人,2019),岩性预测(Zhang et al.,2018; Shi等人,2019)、地质结构分类(Li,2018)和到达拾取(Tsai等人,2018年; Yuan等人,2019年; Zhang等人,2020年)。预计未来将有更多的DL程序应用于地球物理勘探,例如矿产勘探(Malehmir等人,2012),隧道中的正演地质勘探(Li et al.,2017)和四维数据监测(Liu等人,2020年b)。除了地震勘探,其他勘探方法也应用DL来实现数据处理和解释(乔治和Huerta,2018; Nurindrawati和Sun,2019; Puzyrev,2019; Liu等人,2020年a)。

       在这项研究中,我们开发了一种方法来建立现实的结构模型,即,致密层模型、断层模型和盐体模型,以及使用深层神经网络进行纵波(P波)速度模型反演的完整框架。本研究主要包括两个方面。首先,为了获得尽可能多的复杂模型,设计了模型建立过程。共采集密层/断层/盐体模型18,000个,为网络训练提供了充足的数据。选择SeisInvNet并针对更复杂的模型进行改进。基于生成的速度模型和相应的密集炮数据,训练一个新的深度神经网络来近似从数据到模型的非线性映射。通过训练好的网络,直接输入地震数据即可得到速度模型。与传统方法相比,该方法在计算效率和精度上都取得了较好的效果,并具有一定的推广性。最后,为了与原始SeisInvNet进行比较,我们通过四个评价标准来分析结果,包括平均绝对误差(MAE),均方误差(MSE),结构相似性(SSIM)和多尺度结构相似性(MSSIM)。从分析来看,该方法与原始SeisInvNet相比具有一致的优越性。此外,对故障模型的预测结果进行了仔细的研究,并讨论了未来的研究计划。

三、METHOD—方法

3.1 Problem definition—问题定义

        为了获得地下地质信息,我们通常放置人工震源激发地震波场,并使用地面接收器记录地震波。在本文中,基于时域中的声波方程对合成数据进行建模:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值