DNANet:Dense Nested Attention Network for Infrared Small Target Detection--笔记

Dense Nested Attention Network for Infrared Small Target Detection

用于红外小目标检测的密集嵌套注意力网络 

摘要

单帧红外小目标 (SIRST) 检测旨在将小目标与杂波背景分离。现有的基于CNN的方法不能直接应用于红外小目标,因为在其网络中汇集层可能会导致深层目标的丢失。

本文提出了一种密集嵌套注意力网络(DNA-Net)

设计了一个密集嵌套交互模块(DNIM),以实现高级和低级特征之间的渐进式交互。通过DNIM中的重复交互,可以保持深层红外小目标的信息。

提出了级联信道和空间注意力模块(CSAM)来自适应增强多级特征。通过我们的DNA-Net,小目标的上下文信息可以通过重复融合和增强得到很好的整合和充分利用。

开发了红外小目标数据集(即NUDT-SIRST),并提出了一套评估指标来进行全面的性能评估。在公共数据集和我们自行开发的数据集上的实验证明了我们方法的有效性。

Introduction

红外小目标检测特点:

1)小:由于成像距离长,红外目标一般较小,图像中的像素从1个像素到几十个像素不等。

2)暗淡:红外目标通常具有较低的信杂比(SCR),并且容易沉浸在高噪声和杂波背景中。

3)无形:红外小目标的形状特性有限。

4)可变性:红外目标的大小和形状在不同场景下差异很大。

本文贡献:

• 我们提出了一个DNA-Net来维持深层中的小靶标。通过重复的特征融合和增强,可以很好地整合和充分利用小目标的上下文信息。

• 提出密集嵌套交互模块和通道空间注意力模块,实现渐进式特征融合和自适应特征增强。

• 我们开发了一个红外小目标数据集(即NUDT-SIRST)。据我们所知,我们的数据集是最大的数据集,具有多种类别的目标形状、各种目标大小、不同的杂波背景和地面实况注释。

• 在公共数据集和我们的 NUDT 数据集上的实验证明了我们方法的卓越性能。与现有方法相比,我们的方法对杂波背景、目标大小和目标形状的变化更具鲁棒性。

Method

A. 整体架构

所提出的密集嵌套注意力网络(DNA-Net)的结构图。分为三部分:

(a) 特征提取模块。输入图像首先被馈送到密集嵌套交互模块 (DNIM) 中,以聚合来自多个尺度的信息。请注意,来自不同语义级别的特征通过通道和空间注意力模块 (CSAM) 自适应增强。

(b) 特征金字塔融合模块(FPFM)。增强功能经过上采样和串联,以实现多层输出融合。

(c) 八连邻聚类算法。对分割图进行聚类以确定每个目标区域的质心。

B.特征提取模块
1)动机

传统的U形结构[25]由编码器、解码器和普通跳跃连接组成。编码器用于扩大感受野

### DNANet 小目标检测改进方法 #### 替换注意力机制为稀疏操作 研究表明,在DNANet中将所有的注意力机制替换为稀瘦操作能够提高模型的小目标检测能力。这种改变不仅使模型能够在潜在的目标位置集中计算资源,而且促进了局部上下文信息的学习,进而提升了推理速度和检测精度[^1]。 ```python def sparse_operation(feature_map, threshold=0.5): """ 实现一个简单的稀疏操作函数作为概念证明。 参数: feature_map (numpy.ndarray): 输入特征图 threshold (float): 阈值参数 返回: numpy.ndarray: 应用了稀疏操作后的特征图 """ import numpy as np # 对输入特征图应用阈值处理以模拟稀疏化效果 sparse_features = np.where(abs(feature_map) >= threshold, feature_map, 0) return sparse_features ``` #### 结合多尺度特征融合策略 除了利用稀疏操作外,还可以考虑引入多尺度特征融合的方法来进一步改善小目标的表现。这种方法允许不同层次的信息相互补充和支持,特别是对于较小尺寸的对象尤为重要。例如,可以在网络结构内部加入更多的跳跃连接或是设计专门针对低分辨率到高分辨率映射的组件[^2]。 #### 利用循环残差机制加强特征表示 借鉴R2U-Net的设计理念,向现有的DNANet框架内嵌入循环残差单元可以帮助更好地捕捉长期依赖关系并强化特征表达力。这有助于解决由于下采样过程中丢失的空间细节而导致的小物体识别困难问题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值