什么是轴向注意力(Axial Attention)机制

Axial Attention,轴向注意力,有行注意力(row-attention)和列注意力(column-attention)之分,一般是组合使用。

原文阅读:https://arxiv.org/pdf/1912.12180v1.pdf

self-attention已经显示出了良好的性能,不过其缺点也是明显的:它的使用使得模型的参数量和计算量开始飙增,特别是应用在nlp的长序列问题和图像的像素点上时。以后者为例,单张图像大小为H*W(*3),一个像素点需要和其他所有像素点作注意力,即H*W,一共又有H*W个像素点,则一次self-attention的计算量在O((H*W)2),当图像的分辨率不断增高,这种平方式增长的计算量是不能接受的。
在这里插入图片描述

轴向注意力应运而生,简单来说,是分别在图像的竖直方向和水平方向分别进行self-attention,这样计算量被削减为O(2*H*W)=O(H*W)

显然,单独使用行或列注意力是无法融合全局信息的,只有组合起来才能获得与full attention相似的性能。

以两个维度为例,组合方式可以先行再列,可以先列再行,也可以分别进行行与列注意力,再对结果分别相加。

  • 先行再列:x1 = RowAtten(x), out = ColAtten(x1)
  • 先列再行:x1 = ColAtten(x), out = RowAtten(x1)
  • 分别进行:out = RowAtten(x) + ColAtten(x)

代码展示可以参考我的另一篇博客论文学习——VideoGPT,使用的是对时间和空间共三个维度分别进行axial attention,再对结果相加的形式。

### 轴向注意力机制的概念 轴向注意力Axial Attention)是多维变换器的核心组成部分之一,它代表了对传统自注意机制的一种改进方式。不同于标准的自注意力模型需一次性处理完整的输入序列,轴向注意力聚焦于张量特定维度上的元素交互,从而有效降低了计算资源的需求并提高了效率[^1]。 ### 原理分析 具体来说,在图像识别领域中,当面对二维或多维的数据结构时,轴向注意力允许算法单独沿行或列方向执行注意力操作,而不是像常规做法那样先将图片转换为单一的一维数组再进行全局范围内的特征提取。这种局部化关注策略不仅简化了运算流程,还能够更好地保留原始空间信息,有助于提升最终预测性能。 对于更复杂的三维甚至更高维度的情况,比如视频帧或者时间序列数据,通过依次沿着各个坐标轴施加注意力权重,可以进一步减少内存占用以及加速训练过程。此外,这种方法也使得网络更容易捕捉到不同尺度下的模式变化特点[^3]。 ```python import torch.nn as nn class AxialAttention(nn.Module): def __init__(self, dim=512, num_heads=8): super(AxialAttention, self).__init__() # 定义轴向注意力层的具体参数配置 def forward(self, x): # 实现前向传播逻辑,针对指定轴应用注意力机制 pass ``` ### 应用场景探讨 在实际项目里,轴向注意力已被广泛应用于计算机视觉任务之中,特别是在那些涉及大规模高分辨率影像处理的工作流当中表现出色。例如: - **目标检测**:YOLOv10等现代物体探测框架利用该技术来增强边界框定位精度; - **语义分割**:通过对像素级标签分配更加精准的关注度分布,提高区域划分准确性; - **姿态估计**:借助对人体关节位置之间关系的理解加深,改善动作捕捉效果; 除了上述提到的应用之外,任何需要高效管理大量多维数据的任务都可能是轴向注意力潜在的研究对象和发展方向[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖虎干嘛了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值