R语言--Cox模型校准曲线原理(二)算法

本文详细介绍了R语言中Cox模型校准曲线的计算过程,包括Kaplan Meier法计算的实际生存率、平均预测生存率及标准误的计算。通过实例分析了分组的依据和生存率预测值的确定方法,为进一步理解Cox模型提供帮助。

系列文章目录

R语言–Cox模型校准曲线原理(一)数据



前言

上一节给自己留了个坑,这赶紧过来填上。众所周知Cox模型的校准曲线数据是rms包中的calibrate函数计算而来的。那里面的数据到底是如何计算来的?搞清楚了这个,或许对进一步了解cox模型有一定帮助。


一、回顾校准曲线绘图数据

第二排数据的来源,也就是mean.predicted,KM,std.err是如何计算的呢?这几个数据是不需要迭代就能算出来的。剩余的数据和1000次bootstrap(自助法抽样)后计算相关。
在这里插入图片描述

  • KM: 生存分析中的Kaplan Meier法简称KM法。calibrate函数计算的结果(以下简称cal)中的KM数据得就是通过Kaplan Meier法计算得到的实际*年生存率
  • mean.predicted: 就是通过模型计算而来的平均*年生存率。
  • std.err: 是预测生存率的标准误。

二、计算

为了更清楚解决这个问题,采用R语言中lung数据框中的数据,方便大家复现以及发现问题。

1.分组

在通过KM法构建COX模型的校准曲线时,会根据病例的风险进行分组,然后计算每组的平均值,关于这里为什么分组,是因为,KM法计算生存概率时对病例数有一定的要求,通俗来说就是,如果只有一两个病人,是无法计算他的*年生存率的,因此分组数不能太多导致各组病例数较少,大部分文献中分3组至4组就差不多了。

这里先弄清楚两个问题:

  • 根据什么分组: 根据*年预测生存概率
  • 怎么计算*年生存概率预测值: 山人自有妙计
##随便构建一个cox模型并绘制一个默认的校准曲线
set.seed(1234)
ind <- sample(1:2,size = nrow(a),prob = c(0.7,0.3),replace =T)
train <- a[ind==1,]
test <- a[ind==2,]
dd=datadist(train)   
options(datadist="dd")
#设置时间为
<think>我们正在处理一个关于绘制Cox比例风险模型coxph模型校准曲线的问题。根据引用[1]和引用[2],我们知道校准曲线用于评估模型预测风险与实际观察风险之间的一致性。在R语言中,我们可以使用一些包来绘制校准曲线。 引用[1]中提到了一个名为`plotCalibration`的函数,但是并没有说明它来自哪个包。引用[2]提到在模型评估中使用了校准曲线,并且提到了神经网络算法模型表现最好,但没有直接给出coxph模型校准曲线的绘制方法。引用[3]展示了如何用R语言绘制cox模型的列线图,但没有直接涉及校准曲线。 在R中,绘制校准曲线的常用包有`rms`和`survival`。对于Cox模型,我们可以使用`rms`包中的`calibrate`函数来生成校准数据,然后进行绘图。 步骤大致如下: 1. 使用`cph`函数(在`rms`包中)拟合Cox模型,因为`rms`包中的校准函数需要这个格式的模型。 2. 使用`calibrate`函数对模型进行校准评估。 3. 使用`plot`函数绘制校准曲线。 注意:`cph`是`rms`包中对`coxph`的扩展,提供了更多功能,包括校准。 因此,我们可以这样绘制校准曲线: 1. 安装并加载必要的包:`rms`, `survival`。 2. 准备数据,并确保数据格式正确(使用`datadist`函数设置数据分布)。 3. 使用`cph`函数建立Cox模型。 4. 使用`calibrate`函数计算校准数据。 5. 绘制校准曲线。 示例代码: ```r # 安装包(如果未安装) # install.packages("rms") # install.packages("survival") # 加载包 library(rms) library(survival) # 准备数据(这里用lung数据集作为示例) data(lung) dd <- datadist(lung) # 设置数据分布 options(datadist = "dd") # 构建模型,注意这里使用cph而不是coxph fit <- cph(Surv(time, status) ~ age + sex, data=lung, x=TRUE, y=TRUE, surv=TRUE) # 校准:通常选择在某个时间点(如中位生存时间)进行校准 # 这里以中位生存时间为例,注意需要指定时间点 cal <- calibrate(fit, u=median(lung$time, na.rm=TRUE), cmethod='KM', m=50, B=40) # 绘制校准曲线 plot(cal, las=1, xlab="Predicted Probability", ylab="Actual Probability") ``` 说明: - `u`:指定要校准的时间点。 - `cmethod`:校准方法,通常使用"KM"(Kaplan-Meier)方法。 - `m`:每个区间中的样本数。 - `B`:重复抽样的次数(用于bootstrap)。 另一种方法是使用`riskRegression`包中的`plotCalibration`函数,它可以直接处理`coxph`模型。例如: ```r # 安装并加载riskRegression包 # install.packages("riskRegression") library(riskRegression) library(survival) # 使用lung数据集 data(lung) # 处理数据(去掉缺失值) lung <- na.omit(lung) # 建立coxph模型 fit_coxph <- coxph(Surv(time, status) ~ age + sex, data=lung) # 计算预测风险(在某个时间点,例如中位生存时间) pred_risk <- 1 - predictSurvProb(fit_coxph, newdata=lung, times=median(lung$time)) # 绘制校准曲线 plotCalibration(fit_coxph, data=lung, times=median(lung$time)) ``` 注意:`predictSurvProb`函数在`riskRegression`包中,用于计算生存概率,然后我们通过1减去生存概率得到死亡风险(即事件发生的风险)。 引用[1]中出现的`plotCalibration`函数可能就是来自于`riskRegression`包。 因此,用户可以根据自己的需要选择使用`rms`包或`riskRegression`包。 总结: 1. 使用`rms`包:需要将模型用`cph`拟合,然后使用`calibrate`函数和`plot`函数。 2. 使用`riskRegression`包:可以直接使用`coxph`模型,用`plotCalibration`函数绘制。 生成相关问题: 1. 如何选择校准曲线的时间点? 2. 校准曲线中的参数(如m和B)应该如何调整? 3. 除了校准曲线,还有哪些方法可以评估Cox模型的性能? 4. 如何处理校准曲线中观察到的模型校准或过校准? </think>### Coxph模型校准曲线的绘制方法 校准曲线用于评估预测模型的准确性,直观展示预测风险与实际观测风险的一致性。以下是基于R语言coxph模型校准曲线绘制方法: #### 方法一:使用`rms`包(推荐) ```r # 加载包 library(rms) library(survival) # 1. 数据准备 dd <- datadist(your_data) # 设置数据分布 options(datadist = "dd") # 2. 构建coxph模型(使用cph函数) model <- cph(Surv(time, status) ~ var1 + var2, data = your_data, x = T, y = T, surv = T) # 3. 生成校准曲线(指定时间点) cal <- calibrate(model, u = 365, # 校准时间点(如365天) cmethod = "KM", # Kaplan-Meier方法 m = 50, # 分箱数 B = 40) # Bootstrap重抽样次数 # 4. 绘制校准曲线 plot(cal, las = 1, xlab = "Predicted Probability", ylab = "Actual Probability") abline(0, 1, lty = 2) # 添加对角线 ``` #### 方法:使用`riskRegression`包 ```r library(riskRegression) library(survival) # 1. 构建coxph模型 model <- coxph(Surv(time, status) ~ var1 + var2, data = your_data) # 2. 绘制校准曲线 plotCalibration(Score(list(model), formula = Surv(time, status) ~ 1, data = your_data, plots = "cal"), times = 365) # 指定时间点 ``` #### 关键参数说明: 1. **时间点选择**:`u`/`times`需指定临床关注的时间点(如28天/1年生存率) 2. **分箱方法**:`m`控制分组数量,通常取30-50组 3. **Bootstrap**:`B`建议40-200次以提高稳定性 4. **理想曲线**:对角线(y=x)表示完美校准 > **注意事项**: > - 数据需使用`Surv()`对象处理生存数据 > - 推荐使用`rms`包的`cph()`而非`coxph()`,因后者不直接支持校准 > - 缺失值需提前处理(如`na.omit()`) > - 若出现离散点,可通过增加`m`或`B`优化[^2] ### 可视化示例 理想校准曲线应紧贴对角线: ``` 预测风险(x轴) | / | / 实际观测风险(y轴) |_____/ ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一口吃两口饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值