CINTA作业九:QR


1. 证明命题11.2

用 QRp 表示模 p 的 QR 的集合,QRp 在乘法上成群。


证明:
封闭性:
∀ \forall m1,m2 ∈ \in QRp,有m1 ≡ \equiv x12 (mod p),m2 ≡ \equiv x22 (mod p),x1,x2 ∈ \in Zp
那么 m1 ⋅ \cdot m2 ≡ \equiv x12 ⋅ \cdot x22(mod p)=(x1 ⋅ \cdot x2)2(mod p),即m1 ⋅ \cdot m2 ≡ \equiv (x1 ⋅ \cdot x2)2(mod p),
而x1 ⋅ \cdot x2 ∈ \in Zp,因此m1m2 ∈ \in QRp
结合律:
∀ \forall m1,m2,m3 ∈ \in QRp,有m1 ≡ \equiv x12 (mod p),m2 ≡ \equiv x22 (mod p),m3 ≡ \equiv x32(mod p)
x1,x2,x3 ∈ \in Zp 。(m1m2)m3 ≡ \equiv (x12x22)x32 (mod p)=x12(x22x32) (mod p)
因此,(m1m2)m3=m1(m2m3)。
单位元:
首先可知,gcd(1,p)=1,1 ∈ \in Zp,又有1 ≡ \equiv 12 (mod p),因此1 ∈ \in QRp 。又由于 ∀ \forall m ∈ \in QRp,m ⋅ \cdot 1=m=1 ⋅ \cdot m,因此1是单位元。
逆元:
∀ \forall m ∈ \in QRp,有m ≡ \equiv x2(mod p),x ∈ \in Zp
又因为Zp在乘法下成群,有x-1 ∈ \in Zp
而m-1 ≡ \equiv x-(1)2 (mod p),那么m ⋅ \cdot m-1 ≡ \equiv x2 ⋅ \cdot x-(1)2(mod p)=1 (mod p)
因此m ⋅ \cdot m-1=1,可知m-1为元素m的逆元,且存在QRp
以上四点群公理均满足,所以QRp 在乘法上成群。


2. 使用群论的方法证明定理11.1

设 p 为奇素数,则刚好存在 (p − 1)/2 个模 p 的 QR 和 (p − 1)/2 个模 p 的 QNR。


证明:
首先|Zp|=p-1,QR的个数+QNR的个数=|Zp|=p-1.
构造映射 ϕ \phi ϕ:Zp → \rightarrow QRp为a → \rightarrow a2(mod p)
∀ \forall a,b ∈ \in Zp ϕ \phi ϕ(a,b)=(ab)2(mod p)=a2b2 (mod p)= ϕ \phi ϕ(a) ϕ \phi ϕ(b),
证得 ϕ \phi ϕ是一种同态映射。
令 K = ker ϕ \phi ϕ = {1 , p−1},构造映射 φ \varphi φ:Zp → \rightarrow Zp/K.
根据第一同构定理可得
同构映射 η \eta η:Zp/K → \rightarrow ϕ \phi ϕ(Zp),即Zp/K → \rightarrow QRp
根据命题9.1可知,对于同构映射 η \eta η:Zp/K → \rightarrow QRp
有|Zp/K| = |QRp|
|Zp| / |K| = (p-1)/2。
因此|QRp|=(p-1)/2,|QNRp| = |Zp| - |QRp| = (p-1)/2。


3. 定义映射 ψ \psi ψ : Zp* → \rightarrow {±1} 为 ψ \psi ψ(a) = (a/p) ,∀a ∈ Zp*。请证明这是一个满同态。


证明:
由于Zp*一定存在QR与QNR,那么可知 ψ \psi ψ是一个满射。
由命题11.4可知, ∀ \forall a,b ∈ \in Zp* ψ \psi ψ(ab)= ψ \psi ψ(a) ψ \psi ψ(b),即证得 ψ \psi ψ是一个同态映射。
因此 ψ \psi ψ是一个满同态。


4. 设 p 是奇素数,请证明 Zp* 的所有生成元都是模 p 的二次非剩余。


证明:
设g是Zp*的生成元,由p是奇素数可知g的阶为p-1。
假设g是模p的二次剩余,则存在a ∈ \in Zp*,g ≡ \equiv a2 (mod p)。
可得g(p-1) ≡ \equiv a2(p-1) ≡ \equiv 1 (mod p),而由费尔马小定理得a(p-1) ≡ \equiv 1(mod p)
g(p-1)/2 ≡ \equiv a(p-1) ≡ \equiv 1 (mod p),这与g的阶为p-1矛盾。
因此Zp* 的所有生成元都是模 p 的二次非剩余。


5. 证明命题11.4

设 p 是奇素数,a, b ∈ Z 且不被 p 整除。则有:

  1. 如果 a ≡ b (mod p),则 a/p= b/p;
  2. (a/p)(b/p)=(ab/p);
  3. (a2/p)=1。

证明:
1.
如果a ≡ \equiv b (mod p),若a是模p的QR,那么b ≡ \equiv a ≡ \equiv x2 (mod p),x ∈ \in Zp,因此b也是模p的QR,a/p = b/p =1。
若a是模p的QNR,那么不存在Zp中的元素的平方与a同模,同样也不与b同模,因此b也是模p的QNR,a/p = b/p = -1。
2.
根据命题11.3可以得出。
3.
由第二点可以得出。即(a2/p)=(a/p)(a/p)=(a/p)2=1。


6. 给出推论11.1的完整证明。

设 p 是一个奇素数,则:
如果p ≡ \equiv 1(mod 4),(-1/p) = 1;
如果p ≡ \equiv −1 (mod 4),(-1/p)=-1。


证明:
根据欧拉准则,(-1/p) ≡ \equiv (-1)(p-1)/2 (mod p)
1.若p ≡ \equiv 1(mod 4),则存在k ∈ \in Z,有p=4k+1,代入得
(-1/p) ≡ \equiv (-1)2k (mod p) ≡ \equiv 1 (mod p)。因此(-1/p) = 1。
2.若p ≡ \equiv −1 (mod 4),则存在k ∈ \in Z,有p=4k-1,代入得
(-1/p) ≡ \equiv (-1)2k-1 (mod p) ≡ \equiv -1 (mod p)。因此(-1/p) = -1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值