CINTA作业六:拉格朗日定理


1. 设 G 是群,H 是 G 的子群。任取 g1, g2 ∈ G,则 g1H = g2H 当且仅当 g1−1 ⋅ \cdot g2∈ H。


证明:
充分性:
如果g1H=g2H, 那么存在h1, h2 ∈ \in H, 有g1h1=g2h2
两边同时左乘g1-1得e ⋅ \cdot h1=g1-1g2h2
两边再同时右乘h2-1得h1h2-1=g1-1g2
而由于H为群, h1h2-1 ∈ \in H, 即证得 g1-1g2 ∈ \in H
必要性:
由g1-1g2 ∈ \in H得, 存在h ∈ \in H, g1-1g2=h, 那么任取h2 ∈ \in H, 有g1-1g2h2=hh2, g2h2=g11hh2, 又由于hh2 ∈ \in H,也就表明任取h2 ∈ \in H,存在hh2 ∈ \in H使得,
g1h ⋅ \cdot h2=g2h2, 即可证得g1H=g2H


3. 如果 G 是群,H 是群 G 的子群,且 [G : H] = 2,请证明对任意的 g ∈ G,gH = Hg。


证明:
由[G:H]=2可知, 子群H的左陪集将G划分为两个部分,而且其中一个就是H本身,即g ∈ \in H的时候, 另一个部分就应该是G-H。
那么对于任意g ∈ \in G:
当g ∈ \in H时, 由群公理知,群元素的运算结果满足封闭性, 因此有gH=H=Hg,
所以gH=Hg
当g ∉ \notin /H时, gH=G-H, 对于右陪集Hg, 其结果也落G-H上, 因此gH=Hg


4. 如果群 H 是群 G 的真子群,即存在 g∈G 但是 g ∉ \notin /H。请证明 |H| ≤ |G| /2。


证明:
首先由群H是群G的真子群可知,群G可以被划分为H和G-H至少两个部分,即[G:H] ≥ \geq 2, 由命题8.2可知,陪集gH的阶与H的阶相同。
因此 |G| / |H| = [G:H] , 可得 |H| ≤ \leq |G|/2


5. 设 G 是阶为 pq 的群,其中 p 和 q 是素数。请证明 G 的任意真子群是循环群。


证明:
由拉格朗日定理可知, 群G的子群的阶一定整除群G的阶, 又由于G的阶是pq, p和q是素数,则G的真子群有三个, {e},群的阶为p的子群和群的阶为q的子群, {e}是循环群, 由推论8.2知, 群的阶为素数时, 群为循环群
所以G 的任意真子群是循环群。


7. 使用群论的方法重新证明费尔马小定理和欧拉定理。


证明:
设群G元素a的阶为m, 则am=e,且由推论8.1有m | n,即存在k ∈ \in Z, n=k × \times ×m
那么an=akm=(am)k=ek=e, 得证an=e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值