CINTA作业八:CRT


1. 手动计算 20002019(mod 221),不允许使用电脑或者其他电子设备


首先可以知道,221=13*17,13和17都是素数且互素,那么Z221 ≅ \cong Z17 × \times ×Z13。又因为2000%13=11,并且2000%17=11。
因此20002019 ↔ \leftrightarrow (11,11)2019
20002019 (mod 221)=(112019(mod 17),112019(mod 13))。
由于17与13都是素数,那么根据费尔马小定理可得:
∀ \forall a ∈ \in Z17,a16 ≡ \equiv 1 mod (17). ∀ \forall b ∈ \in Z13,b12 ≡ \equiv 1 mod (13)
2019=16∗126+3=12∗168+3。
因此112019(mod 13) ≡ \equiv 113mod(13) ≡ \equiv 5mod(13)
112019(mod 17) ≡ \equiv 113mod(17) ≡ \equiv 5mod(17)。
20002019 ↔ \leftrightarrow (5,5)
所以设所求20002019(mod 221)为x,则可得同余方程组:
x ≡ \equiv 5mod(13)
x ≡ \equiv 5mod(17)
根据中国剩余定理解得x=5


2. 运用 CRT 求解:

x ≡ 8 (mod 11)
x ≡ 3 (mod 19)


解:
根据egcd算法得 7∗11-4∗19=1,即 7∗11 ≡ \equiv 1 mod(19),
(11-4)∗19 ≡ \equiv 1 mod(11)
因此x ≡ \equiv 8∗19∗7+3∗11∗7 mod(11∗19),解得x=41


3. 运用 CRT 求解:

x ≡ 1 (mod 5)
x ≡ 2 (mod 7)
x ≡ 3 (mod 9)
x ≡ 4 (mod 11)


解:
设m0=5,m1=7,m2=9,m3=11。M= ∏ i = 0 3 \prod_{i=0}^3 i=03mi,则M=3465,设bi=M/mi
则根据egcd算法分别算得:
-277∗5+2∗m0= 1 , -212∗7+3∗m1= 1 , -171∗9+4∗m2=1, 86∗11-3∗m3=1。
可知,在模M下,b0-1=2,b1-1=3,b2-1=4,b3-1=-3
根据中国剩余定理的推广版
x=(1∗2∗m0+2∗3∗m1+3∗4∗m2+4∗(-3)∗m3)mod(M)=1731


4. 设 m 和 n 为互素的正整数,a > 0 为一个正整数,

如果
x ≡ a (mod m)
x ≡ a (mod n)
x 模 mn 等于什么?为什么?提示:这是一道看上去与中国剩余定理相关的问题


解:
x mod (mn)=a
证明:
对x ≡ a (mod m) ,可知x=a+km,k ∈ \in Z
再带入x ≡ a (mod n),有a+km ≡ \equiv a (mod n)
可知km ≡ \equiv 0 (mod n),n|km,又因为m与n互素,所以存在t ∈ \in Z,k=tn,,代入得x=a+tmn,所以x mod (mn)=a


5. 设 p 和 q 是不同的两个素数,请证明 :

pq−1 + qp−1 ≡ 1 (mod pq)。


证明:
设存在唯一的x ∈ \in [0,p∗q),满足同余方程组:
x ≡ \equiv 1 mod p
x ≡ \equiv 1 mod q
根据费尔马小定理,可知pq-1 ≡ \equiv 1 mod q,qp-1 ≡ \equiv 1 mod p
再根据CRT,可得x=(1∗pq-1+1∗pq-1) mod (pq)
又根据4.的结论可知,x mod (pq)=1,因此,pq-1+qp-1 ≡ \equiv 1 mod (pq)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值