CINTA作业四:群、子群

本文探讨了群论的基本概念和性质,包括群的闭包性、逆元的存在性以及结合律。通过命题6.6和6.7的证明,阐述了群中元素的运算规则,并展示了对于任意偶数阶群,总存在阶为2的元素。命题6.9则证明了子群的定义及其逆元性质。内容涵盖了群的结构、运算规则和子群的形成条件。
摘要由CSDN通过智能技术生成

3.命题6.6

设 G 为群,且 a, b, c ∈ G。如果 ba = ca,则 b = c;并且,如果 ab = ac,则 b = c。


证明:
假设群G的单位元为e,根据群的定义有 ∀ \forall x ∈ \in G,xe=x=ex,且有 x − 1 x^{-1} x1 ∈ \in G,且x x − 1 x^{-1} x1=e
如果a,b,c ∈ \in G,且ba=ca,则等式两边同时右乘 a − 1 a^{-1} a1可得b=c
同理,对ab=ac,同时左乘 a − 1 a^{-1} a1得b=c


4.命题6.7

设 G 是群,∀g, h ∈ G,以下性质成立。
1.∀m, n ∈ Z, g m g^{m} gm g n g^{n} gn = g m + n g^{m+n} gm+n
2.∀m, n ∈ Z, g m n g^{m^n} gmn = g m n g^{mn} gmn
3.∀n ∈ Z, ( g h ) n (gh)^n (gh)n = (h-1g-1)−n;如果 G 是阿贝尔群,则 (gh)n = gnhn


证明:
1.gm,gn可分别看作是m个g,n个g进行运算,又由于G是群,由群的定义可知,群元素的运算满足结合律,因此gmgn=gm+n
2.类似于1. g m n g^{m^n} gmn可看作是n个 m个g运算 的运算结果,由群的结合律可得
g m n g^{m^n} gmn = g m n g^{mn} gmn
3. (h-1g-1)-n ∈ \in G,由群定义可以其逆元为(h-1g-1)n, (h-1g-1)-n(h-1g-1)n=e,
而(gh)n(h-1g-1)n={gh…gh}{h-1g-1…h-1g-1}={gh…gh ⋅ \cdot g ⋅ \cdot e ⋅ \cdot g-1 ⋅ \cdot h-1g-1…h-1g-1}={gh…gh ⋅ \cdot e ⋅ \cdot h-1g-1…h-1g-1}
由于两边恰好都为n次运算,最终运算结果会变成单位元e,即(gh)n(h-1g-1)n=e,即(gh)n也是(h-1g-1)n的逆元,由群元素逆元唯一可得, ( g h ) n (gh)^n (gh)n = (h-1g-1)−n;
如果G是阿贝尔群,群元素之间的运算满足交换律,那么
(gh)n=(g ⋅ \cdot h) ⋅ \cdot ⋅ \cdot (g ⋅ \cdot h)=(g ⋅ \cdot ⋅ \cdot g) ⋅ \cdot (h ⋅ \cdot ⋅ \cdot h)=gnhn


5.证明对任意偶数阶群G,都存在g ∈ \in G,g ≠ \neq =e且g2=e


证明:
题意在于证明对任意偶数阶群,都存在阶为2的元素。首先对阶为1的元素,即单位元e,对阶大于2的元素,记为h,h ∈ \in G,且hm=e,m为h的阶,由于hm=e,
hm ⋅ \cdot (h-1)m=e(h-1)m,而hm ⋅ \cdot (h-1)m={h ⋅ \cdot ⋅ \cdot h} ⋅ \cdot {h-1 ⋅ \cdot ⋅ \cdot h-1}=e,所以e=e(h-1)m,
可知(h-1)m=e,这表明阶大于2的元素都是成对存在的,又由于群的阶为偶数,阶为1的元素只有e一个,阶大于2的元素成对存在,则一定存在阶为2的元素。


6.命题6.9

群 G 的非空子集 H 是 G 的子群,当且仅当 H ≠ \neq = ∅,且对任意 a, b ∈ H,
a ⋅ \cdot b-1 ∈ H。


证明:
充分性:
由于H是G的非空子群,则H ≠ \neq =∅,且 ∀ \forall a,b ∈ \in H,由群公理可知b-1 ∈ \in H,又由于群的封闭性,则a ⋅ \cdot b-1 ∈ \in H.
必要性:
由H ≠ \neq = ∅知H非空,
单位元:
∀ \forall a ∈ \in H,a ⋅ \cdot a-1=e ∈ \in H,证得单位元e存在于H
结合律:
由于H是群G的子集,则H中元素在相同运算的前提下满足结合律
逆元:
∀ \forall a ∈ \in H,由前面知e ∈ \in H,则根据条件可得
e ⋅ \cdot a-1=a-1 ∈ \in H,即a的逆元也在H中
封闭性:
由逆元存在可知, ∀ \forall a,b ∈ \in H,b-1 ∈ \in H,因此a ⋅ \cdot (b-1)-1=a ⋅ \cdot b ∈ \in H
以上四点可知子集H是群G的子群


7.设G是群,对任意n ∈ \in N,i ∈ \in [0,n],gi ∈ \in G。证明g0g1…gn的逆元是gn-1…g1-1g0-1


证明:
由上面命题4.6的第三点有∀n ∈ Z, ( g h ) n (gh)^n (gh)n = (h-1g-1)−n,令n=1,得:
(g0g1…gn)-1=gn-1 ⋅ \cdot (g0g1…gn-1)-1=gn-1gn-1-1 ⋅ \cdot (g0g1…gn-2)-1=…=gn-1 ⋅ \cdot ⋅ \cdot g0-1
题目得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值