💖💖>>>加勒比海带,QQ2479200884<<<💖💖
🍀🍀>>>【YOLO魔法搭配&论文投稿咨询】<<<🍀🍀
✨✨>>>学习交流 | 温澜潮生 | 合作共赢 | 共同进步<<<✨✨
📚📚>>>人工智能 | 计算机视觉 | 深度学习Tricks | 第一时间送达<<<📚📚
论文题目:《CBAM: Convolutional Block Attention Module》
论文地址: https://arxiv.org/pdf/1807.06521.pdf
实验证明,将CBAM注意力模块嵌入到YOLOv5网络中,有利于解决原始网络无注意力偏好的问题。近期较忙,想要代码的小伙伴请私信~
CBAM注意力结构基本原理:从上图明显可以看到, CBAM一共包含2个独立的子模块, 通道注意力模块(Channel Attention Module,CAM) 和空间注意力模块(Spartial Attention Module,SAM) ,分别进行通道与空间维度上的注意力特征融合。 这样不只能够节约参数和计算力,并且保证了其能够做为即插即用的模块集成到现有的网络架构中去。
那对应YOLOv5结合CBAM需要修改哪些地方:
1.common.py
加入CBAM代码
class ChannelAttentionModule(nn.Module):
def __init__(self, c1, reduction=16):
super(ChannelAttentionModule, self).__init__()
mid_channel = c1 // reduction
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.shared_MLP = nn.Sequential(
nn.Linear(in_features=c1, out_features=mid_channel),
nn.ReLU(),
nn.Linear(in_features=mid_channel, out_features=c1)
)
self.sigmoid = nn.Sigmoid()
#self.act=SiLU()
def forward(self, x):
avgout = self.shared_MLP(self.avg_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)
maxout = self.shared_MLP(self.max_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)
return self.sigmoid(avgout + maxout)
class SpatialAttentionModule(nn.Module):
def __init__(self):
super(SpatialAttentionModule, self).__init__()
self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)
#self.act=SiLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avgout = torch.mean(x, dim=1, keepdim=True)
maxout, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avgout, maxout], dim=1)
out = self.sigmoid(self.conv2d(out))
return out
class CBAM(nn.Module):
def __init__(self, c1,c2):
super(CBAM, self).__init__()
self.channel_attention = ChannelAttentionModule(c1)
self.spatial_attention = SpatialAttentionModule()
def forward(self, x):
out = self.channel_attention(x) * x
out = self.spatial_attention(out) * out
return out
2.yolo.py
找到相应位置,加入CBAM。
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP,
DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, CBAM]:
3.yolov5s.yaml
根据实际训练效果,在配置文件中的C3模块后面适当添加CBAM注意力模块,过程中注意通道数和网络层数的变化(注:不同添加位置效果可能不大一样)。综上,YOLOv5结合注意力结构就大功告成了!!!