引言
在计算机视觉领域,特别是图像分割任务中,UNet架构因其优异的性能而广受欢迎。
然而,传统的UNet在处理复杂场景时,对所有空间位置和通道特征一视同仁,这可能导致对重要特征的关注不足。
本文将详细介绍一种改进的UNet架构——UNet_CBAM。
它通过集成卷积块注意力模块(Convolutional Block Attention Module, CBAM)来增强模型对关键特征的关注能力。
1. CBAM注意力机制
CBAM是一种轻量级的注意力模块,可无缝集成到CNN架构中。
它由两个子模块组成:通道注意力模块和空间注意力模块。