先验概率(Prior Probability)
定义
先验概率是指在没有考虑额外证据或观测数据之前,对事件或假设的初步估计。它基于已有的知识、经验或统计数据得出。
数学表示
若 C 表示某一事件或类别,先验概率用 P(C) 表示。
特点
- 它是事前概率,不依赖于观测数据。
- 反映的是对事件可能性的初始认识。
- 先验概率通常基于历史数据或主观判断。
举例
- 如果一家公司有 70% 的员工为男性,30% 为女性,则在没有其他信息的情况下,某随机选取的员工为男性的先验概率为 0.7。
后验概率(Posterior Probability)
定义
后验概率是指在给定额外证据或观测数据后,对事件或假设可能性的更新估计。它通过贝叶斯定理计算得到,将先验知识与观测数据结合。
数学表示
若 C 表示事件或类别,X 表示观测数据,则后验概率为 P(C∣X) 。
贝叶斯定理的公式为:
特点
- 它是事后概率,反映了考虑额外证据后的修正认识。
- 后验概率综合了先验概率和观测数据的作用。
- 是基于统计推断的重要工具,用于更新对事件的相信程度。
举例
- 如果上述公司中 80% 的男性员工戴眼镜,而你观察到某员工戴了眼镜,这就是额外证据。此时,可以用贝叶斯定理重新计算这个员工为男性的后验概率。
先验概率与后验概率的关系
-
起点和修正:
- 先验概率是初始估计。
- 后验概率通过观测数据对先验概率进行更新。
-
贝叶斯定理的核心思想:
后验概率 P(C∣X) 是先验概率 P(C) 和似然 P(X∣C) 的组合。 -
示意图:
先验概率+证据→后验概率
简单应用场景
问题:
一台机器有 10% 的概率发生故障(先验概率),但如果传感器检测到异常信号,机器发生故障的可能性变为 90%(后验概率)。
分析:
- 初始认为机器发生故障的可能性为 10%(先验)。
- 传感器的异常信号是新证据。
- 更新后的 90% 概率(后验)说明新证据显著提高了对故障的相信程度。