先验概率和后验概率

先验概率(Prior Probability)

定义
先验概率是指在没有考虑额外证据或观测数据之前,对事件或假设的初步估计。它基于已有的知识、经验或统计数据得出。

数学表示
若 C 表示某一事件或类别,先验概率用 P(C) 表示。

特点

  • 它是事前概率,不依赖于观测数据。
  • 反映的是对事件可能性的初始认识。
  • 先验概率通常基于历史数据或主观判断。

举例

  • 如果一家公司有 70% 的员工为男性,30% 为女性,则在没有其他信息的情况下,某随机选取的员工为男性的先验概率为 0.7。

后验概率(Posterior Probability)

定义
后验概率是指在给定额外证据或观测数据后,对事件或假设可能性的更新估计。它通过贝叶斯定理计算得到,将先验知识与观测数据结合。

数学表示
若 C 表示事件或类别,X 表示观测数据,则后验概率为 P(C∣X) 。

贝叶斯定理的公式为:

P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)}

特点

  • 它是事后概率,反映了考虑额外证据后的修正认识。
  • 后验概率综合了先验概率观测数据的作用。
  • 是基于统计推断的重要工具,用于更新对事件的相信程度。

举例

  • 如果上述公司中 80% 的男性员工戴眼镜,而你观察到某员工戴了眼镜,这就是额外证据。此时,可以用贝叶斯定理重新计算这个员工为男性的后验概率。

先验概率与后验概率的关系

  1. 起点和修正:

    • 先验概率是初始估计。
    • 后验概率通过观测数据对先验概率进行更新。
  2. 贝叶斯定理的核心思想:
    后验概率 P(C∣X) 是先验概率 P(C) 和似然 P(X∣C) 的组合。

  3. 示意图:

    先验概率+证据→后验概率

简单应用场景

问题:
一台机器有 10% 的概率发生故障(先验概率),但如果传感器检测到异常信号,机器发生故障的可能性变为 90%(后验概率)。

分析:

  • 初始认为机器发生故障的可能性为 10%(先验)。
  • 传感器的异常信号是新证据。
  • 更新后的 90% 概率(后验)说明新证据显著提高了对故障的相信程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值