掺铒光纤激光器

一、光纤激光器的特点

  • 实现灵活的激光光源(窄线宽、可调谐、多波长、超短光脉冲源)
  • 易获得高功率、高的光脉冲能量
  • 激光波长与光纤通信传输窗口相匹配
  • 采用激光器泵浦形式(半导体激光器泵浦)
  • 热稳定性、价格低廉、易小型化

二、放大器与激光器的差别

光放大器:无谐振腔,无反馈,外界信号引起的受激辐射

激光器:有谐振腔,有反馈,内部自发辐射导致的受激辐射

(1)谐振腔的理解

        简单来说,谐振腔就像是一个“特殊的房间”,它能够让特定频率的波在里面愉快地“回荡”。这些波包括光波、微波等。当波进入这个“房间”(谐振腔)后,会在其内部的边界之间来回反射。如果波的频率合适,就会发生谐振现象。 例如,你可以把它想象成一个回音壁。当你在回音壁的某个位置发出声音,声音会在墙壁之间反射。如果声音的频率(或者说音调)刚好符合这个回音壁的“喜好”,这个声音就会不断地反射加强,而不是很快地消散。在这个例子中,回音壁就有点像谐振腔,声音就是波。

        作用原理:① 频率选择:谐振腔能够对不同频率的波进行筛选。就像一个筛子一样,只有那些特定频率的波才能在腔内持续存在并且被加强。对于其他频率的波,它们在腔内反射几次后就会因为相互抵消等原因而消失。以光学谐振腔为例,在激光器中,光在谐振腔内来回反射。只有那些满足谐振条件(和腔长、折射率等因素有关)的光频率才能在腔内不断地得到放大并最终形成激光输出。其他频率的光则无法在这个过程中被加强。② 能量存储:当波在谐振腔内谐振时,它会把能量存储在腔内。还是用回音壁的例子,当声音不断地在回音壁内反射加强时,就好像把能量(声音的能量)存储在了这个空间里。在微波领域,谐振腔可以用来存储微波能量,并且可以通过调节腔的参数(比如形状、尺寸等)来控制存储的能量大小和频率等特性。 

        应用领域:在激光器中,光学谐振腔是非常关键的部件。它能够让激光介质产生的光在腔内不断地反射,经过增益介质的放大后,最终输出具有高方向性、高单色性和高相干性的激光束。

三、构成激光振荡的必要条件

  • 粒子数反转 N2-N1>0 :需要外界光泵浦
  • 形成对激射光子的正反馈:需要激光谐振腔
  • 光纤激光器=光纤放大器+激光谐振腔

光纤激光器的构成:

  • ① 激光增益介质: 有源光纤
  • ② 激光谐振腔:  直腔、环行腔
  • ③ 泵浦源:光泵

激光谐振腔是光纤激光器与光纤放大器在结构上的唯一差别

四、光纤激光器的谐振腔类型

4.1 Fabry-Perot 腔

(1)分布布拉格反射(DBR)光纤激光器:使用两个较高反射率的光纤光栅作为反射镜置于掺杂光纤的两端,构成线形谐振腔来增强模式选择,可以把光纤光栅熔接到掺杂光纤上,也可以直接把光纤 光栅写到掺杂光纤上。

(2)分布反馈(DFB)光纤激光器:利用直接在稀土掺杂光纤写入的光栅来构成谐振腔的。有源区和反馈区同为一体,只用一个光栅来实现光反馈和波长选择,因而频率稳定性较好,边模抑制比高。

4.2 含光纤耦合器的Fabry-Perot 腔

4.3 光纤环形镜+平面反射镜

光纤环形镜:将X型光纤耦合器的两输出端相连,所构成的Sagnac环

光纤环形镜特性:

  • 耦合器的耦合分光比为1:1时,光纤环形镜作为全反射镜;
  • 耦合器的耦合分光比不为1:1时,光纤环形镜等效部分反射镜;

反射功率与透射功率为:

4.4 双光纤环形镜

4.5 光纤光栅+光纤环形镜

4.6 光纤光栅+光纤环行器

4.7 光纤环形腔激光器

五、掺铒光纤激光器的优点

  • 高的内量子效率:泵浦光与激射光在纤芯中功率密度大,相互作用强;
  • 高的泵浦效率:半导体激光器泵浦,波长对准;
  • 既可连续、又可脉冲工作:激光上能级寿命长。

### 光纤激光器仿真 MATLAB 代码示例 光纤激光器由于其独特的性质,在通信和其他高科技领域具有重要地位。虽然提供的参考资料主要涉及镱(Yb)光纤激光器[^2],(Er)光纤激光器同样可以通过类似的数值方法进行建模和仿真。 下面是一个简单的光纤激光器仿真的MATLAB代码框架: ```matlab % 参数初始化 lambda = 1.55e-6; % 波长 (m) P_in = 0.001; % 输入泵浦功率 (W) alpha = 0.0467; % 吸收系数 (dB/m),需根据具体材料调整 L_fiber = 3; % 光纤长度 (m) % 定义增益介质属性 sigma_a = 2.8e-20; % 吸收截面面积 (cm^2) sigma_e = 2.9e-20; % 发射截面面积 (cm^2) tau = 10 * 1e-3; % 上能级寿命 (s) N_0 = 0; N_1 = N_0; % 计算反转粒子数密度变化率 dN/dz 和信号光强度 I(z) 的微分方程组 function dydz = fiber_laser_eqns(~, y) global P_in lambda alpha L_fiber sigma_a sigma_e tau N = y(1); % 反转粒子数密度 I = y(2); % 信号光强度 g_N = ((sigma_e - sigma_a)*I)/(h*nu); dydz = zeros(2,1); dydz(1) = -(N / tau) + (g_N*N*(1-N/N_sat)); % dN/dz 方程 dydz(2) = (-alpha*I) + (g_N*N*I); % dI/dz 方程 end % 边界条件设置 y0 = [N_0; P_in]; % 使用 ode45 解决上述定义的常微分方程初值问题 [z,y] = ode45(@fiber_laser_eqns, [0 L_fiber], y0); % 结果可视化 figure(); subplot(2,1,1), plot(z, y(:,1)), title('反转粒子数密度分布'); xlabel('距离 z(m)'), ylabel('N (#/m)'); subplot(2,1,2), semilogy(z, abs(y(:,2))), title('输出功率随位置的变化'); xlabel('距离 z(m)'), ylabel('|I|'); disp(['最终输出功率:', num2str(abs(y(end,2)))]); ``` 此段代码展示了如何建立一个基本模型来描述光纤中的物理过程,并通过求解相应的耦合非线性偏微分方程获得解决方案。需要注意的是这只是一个简化版本的实际系统可能更加复杂,涉及到更多参数和机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薰衣草2333

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值