在LLM(大型语言模型)时代, 数据标注质量直接决定了模型的智能上限。作为开源数据标注领域的标杆工具,Label Studio 凭借其多模态支持能力与高度可定制化的特性,正成为大模型训练中数据工程的基石。
从文本三元组关系抽提到视频对象追踪,从低资源语言的语音标注到医学影像的像素级分割,Label Studio 通过统一的交互界面打破了传统标注工具的场景局限。
一、 Label Studio
*什么是Label Studio?*** Label Studio是一个开源的数据标注和数据管理平台,由Human Signal开发并维护。它旨在提供一个直观、灵活且可扩展的平台,**用于对各种类型的数据(如文本、图像、音频、视频等)进行高质量的标注工作。
为什么选择Label Studio?
它提供了多模态数据支持,丰富的可视化界面以及自定义标注模板的能力,这些特性使得Label Studio成为了一个灵活、高效且适用于多种领域和场景的数据标注平台,能够降低标注门槛,提高标注效率和准确性
\1. 多模态数据支持
- Label Studio支持文本、图像、语音、视频等多种类型的数据标注,满足不同领域和场景的需求。
\2. 丰富的可视化界面
- 提供直观、易用的用户界面,降低数据标注的门槛,提高标注效率。
\3. 自定义标注模板
- 内置多种标注模板,同时允许开发者根据具体业务场景自定义模板,提高标注的针对性和准确性。
二、多模态标注
什么是图像标注?Label-Studio为计算机视觉领域提供了强大灵活的图像标注解决方案,支持图像分类、物体检测、语义分割****等多种标注任务,提升标注效率和准确性。
- 图像分类:根据图像的语义信息将不同类别的图像区分开来。 这是计算机视觉中的基本任务,也是其他高层视觉任务(如图像检测、图像分割等)的基础。
- 物体检测:检测图像上的物体,并使用框(边界框)、多边形、圆形或关键点等形状进行标注。 这有助于机器学习模型学习如何识别图像中的特定物体及其位置。
- 语义分割:将图像分割成多个具有特定语义含义的片段。 这需要对图像中的每个像素进行分类,实现像素级别的分类和标注。
什么是语音标注?
Label-Studio在音频和语音应用方面提供了全面的支持,包括音频分类、说话人分类、情绪识别和音频转录等功能,帮助用户高效地处理和分析音频数据。
- 音频分类:将音频文件根据其内容或特征进行分类。 这可以用于多种场景,如音乐分类(摇滚、爵士、古典等)、环境声音识别(街道噪音、雨声、鸟鸣等)等。
- 说话人分类:根据说话者的身份或特征将音频流划分为同质片段。这在语音识别、会议记录、电话客服等场景中非常有用,可以帮助区分不同的说话者或识别特定的语音特征。
- 情绪识别:从音频中标记并识别情绪,如高兴、悲伤、愤怒、平静等。 这对于情感分析、心理研究、客户服务等领域具有重要意义。
- 音频转录:将口头交流用文字记录下来的过程。 可以与语音识别系统(如NVIDIA NeMo)集成,实现自动或半自动的音频转录功能。
什么是文本标注?
Label-Studio在文档处理领域展现出强大的能力,支持大规模分类(最多可达10,000个类别)、命名实体识别、问答系统训练及情绪分析等多种标注任务。
- 文档分类: 创建分类项目,上传待分类的文档,并定义分类标签。标注者可以根据文档内容将其归类到相应的类别中。
- 命名实体识别:创建NER项目,并定义需要识别的实体类型(如人名、地名等)。标注者随后会在文本中标注出这些实体,并将其归类到相应的类别中。
- 问答系统:创建问答标注项目,并上传包含问题、答案的文本数据。标注者将问题与答案进行关联,以生成训练数据。
- 情绪分析:创建情绪分析项目,并定义情绪标签(如正面、负面、中性)。标注者随后会阅读文本内容,并根据其表达的情绪倾向进行标注。
**********什么是时间序列标注?******Label-Studio通过一些创造性的方法(如转换数据格式、使用外部工具、自定义标签类型等)来处理时间序列数据的分类、分割和事件识别任务。**********
- 时间序列分类:将时间序列数据转换为表格形式,其中每一行代表一个时间点,每一列代表不同的特征(如时间序列中的值、时间戳等),为每个时间序列样本分配类别标签。
- 分割时间序列:使用Python等编程语言进行时间序列的分割,并将分割结果(如分割点的索引或时间戳)作为标签导入Label-Studio进行验证或进一步处理。
- 事件识别:使用Label-Studio中的“矩形”或“多边形”标签来标记图表上的事件区域。这通常适用于那些可以通过视觉识别的事件,如峰值、谷值或突然的变化。
什么是视频标注?
Label-Studio提供视频分类、对象追踪及关键帧标注功能,助力高效、准确的视频数据标注工作。
- 视频分类:在Label-Studio中创建项目,上传视频并定义分类标签,标注者根据视频内容选择相应标签进行分类。
- 对象追踪:设置视频对象追踪项目,上传视频并配置追踪工具,标注者逐帧或关键帧标记对象位置,实现对象在视频中的追踪。
- 辅助标注:标注者选择视频中的关键帧并精确标注对象位置,可选地结合外部工具进行自动插值以估算非关键帧的对象位置。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈