Label Studio简单使用

文章介绍了LabelStudio的安装方法,包括使用pip在Python3.7+环境中安装。启动服务器后,用户可以在默认Web浏览器中访问并创建项目,涉及设置项目名称、数据导入和标签模板。同时,文章还详细说明了如何删除项目,提供了两种删除方式,并提醒用户在执行不可逆操作前备份数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、Label Studio安装

使用 pip 和虚拟环境安装 Label Studio,您需要 Python 版本 3.7 或更高版本。运行下面的命令:

pip install -U label-studio

下载安装过程比较慢。

二、使用Label Studio

1、安装 Label Studio 后,使用以下命令启动服务器:

label-studio

默认 Web 浏览器将通过 Label Studio自动在http://localhost:8080打开。
2、注册账户(第一次使用)/账户登录。
3、点击右上create创建项目,分别要对Project Name(项目名称和描述)、Data Import(数据导入)、Labeling Setup(标签设置)这三个部分进行设置。
Project Name:

在这里插入图片描述
Data Import:

### 如何在 Label Studio使用分类功能 #### 创建项目并配置标签界面 为了在 Label Studio 中实现分类任务,首先需要创建一个新的标注项目。选择合适的模板对于简化设置过程至关重要。对于分类任务而言,通常会选择图像分类、文本分类或其他适用的预定义模板。 ```json { "label_config": "<View>\n <Image name=\"image\" value=\"$image\"/>\n <Choices name=\"class\" toName=\"image\">\n <Choice value=\"Class A\"></Choice>\n <Choice value=\"Class B\"></Choice>\n <Choice value=\"Class C\"></Choice>\n </Choices>\n</View>" } ``` 此 JSON 片段展示了如何通过 XML 定义来构建一个简单的图像分类接口[^1]。在这个例子中,`<Image>` 节点用于显示待分类的对象图片;而 `<Choices>` 则提供了一组可供选择的类别选项供人工标注者挑选。 #### 导入数据集 完成上述配置之后,下一步就是导入要处理的数据文件。支持多种格式如 CSV、JSON 等形式上传本地文件或是连接远程存储服务获取资源。确保所选数据源中的每条记录都含有能够唯一识别该样本的信息字段以及目标属性(如果存在已知标签的话),以便于后续操作。 #### 开始标注工作流 一旦准备就绪,就可以邀请团队成员参与到实际的标注工作中去了。每位参与者都可以看到随机分配给自己的未标记项,并依据个人专业知识做出判断——即选定最恰当的那个类目作为最终答案提交回去保存到数据库里等待审核或进一步分析利用。 值得注意的是,在面对具有复杂特征分布的任务时,线性模型可能无法达到理想的性能表现[^3]。因此建议尝试采用更高级别的机器学习算法来进行辅助决策支持,提高整体效率与质量水平。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值