1.项目背景
在现代电子商务环境中,优化网站设计已成为提升用户参与度和增加销售转化率的关键因素。准确分析用户行为和偏好能够帮助企业制定更有针对性的设计和营销策略,降低客户流失,提高购买转化率,并增强用户体验。通过深入分析影响用户交互和购买行为的主要因素,可以帮助企业更好地理解用户需求,从而制定更有针对性的优化策略,提高整体网站的用户粘性和销售业绩。
本项目旨在探讨影响用户交互和购买行为的关键因素,并通过建立随机森林模型和XGBoost模型进行深入分析。研究结果将为优化网站设计提供重要参考,有助于提升在线书店的用户参与度和市场竞争力。
2.数据说明
字段 | 说明 |
---|---|
Theme | 显示主题,dark(深色);light(浅色) |
Click Through Rate | 点击率:用户点击网站上链接或按钮的比例 |
Conversion Rate | 转化率:首次访问后在平台上注册的用户百分比 |
Bounce Rate | 弹出率:访问单个页面后没有进一步互动就离开的用户百分比 |
Scroll_Depth | 滚动深度:用户滚动浏览网页页面的深度 |
Age | 用户年龄 |
Location | 用户位置 |
Session_Duration | 用户在网站上的会话持续时间 |
Purchases | 用户是否购买了书籍(是/否) |
Added_to_Cart | 用户是否将书籍添加到购物车(是/否) |
3.Python库导入及数据读取
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import spearmanr,ttest_ind
import scipy.stats as stats
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import RandomOverSampler
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
from sklearn.metrics import