公钥密码学的破防基础(第二章)

水平有限,为了期末把要考的课本内容做了个注释,可读性不高(我直接把写的word文档给cv过来了哈哈哈哈),有的地方可以看看,大部分还是比较冗余,看个热闹吧。

有的部分可能还是有点用。(说这句话的意思是大部分都是没用的!\doge)

2.1 - 2.3 同余与剩余(几种表示方法,最小正剩余和绝对最小剩余,后者-m/2≤x<m/2);同余的条件(带余除法后余数相等,用m整除相减后的两个数证明即可);同余是等价关系(满足三个性质);同余可以加减乘;欧几里得可知存在模逆的条件为与模数互素;多项式求模(类似,求出的模数是个多项式);模一个数同余,模它的因子也同余;同余不满足消去律,要消去公因子c的话要将模数m除以(c,m),等于1时就满足消去律了,证明的话用的是相减后仍然能整除,而且除以公因子后还能整除,但是除以公因子以后这俩数就互素了,那就知道谁整除a-b了;左推右也是减法整除,右推左好说,整除因子。

性质7很重要,常用。

2.4 求逆元,首先都有逆元,好做就直接试数,不好做就得扩展欧几里得求逆元。

2.5 被9整除的充要条件:各位数字加和被9整除。

2.6 求模?欧拉定理,试数也行但是太麻烦。

2.7 - 2.10 剩余类问题(定义既约剩余类,phi个,各剩余类互相不交,并为全集);各种剩余系(完全(最小非负)剩余系,简化(既约)剩余系,绝对最小剩余系,证明是抄一遍就行,就这么定义的)。

2.11 首先注意这个(a,m)=1,ax+b遍历完全剩余系,ax+bm遍历既约剩余系,其实就是ax,那么为什么非要互素呢,如果不互素,找一个x=i,j,做差有a(i-j),反正i-j肯定不会超了m,所以如果a,m互素,那么要整除必须得i=j,否则不整除,不整除就意味着俩数不相等。但是如果a,m的最大公因子不为1,i不等于j的时候,只要等于m/(m,a)就相等了,那就不能遍历剩余系了。简化剩余系也是,而且另一件事,a,m互素,所以不仅映射完互不相同,而且由于ax都和m互素,乘出来的也互素。

2.12 这个构造应该说是凭空出来的,但是分析一下,正好有m个数,只要这m个数不同,那构造就成立,首先分别模m1,m2,会发现模m1时只剩下了m2xi,m1和m2还互素,所以只要模m1相同,就必须得x相同,m2同理,那m也同理。所以的确不一样,遍历了完全剩余系。既约剩余系也一样,不一样证法相同,互素也是显然,因为分别对m1和m2互素。

2.13 2.12的扩充版,但是这个归纳很妙,m就是n+1情况下的全部,除去mn+1是n情况下的已知情况,又因为mi两两互素,所以肯定有mn+1和m/mn+1互素,那么根据2.12,相加又遍历了完全剩余系,得证。既约剩余系也一样。

2.14 这个题的关键思想也是证明当x相等时,必须是xi对应相等,取对m1的模,会得到第一个x必须相同,对x2取模,第二个x必须相同,以此类推。

2.15 讲述了模的剩余系与因子的剩余系之间的关系,好多好杂好乱套,先抄一遍。假设m1是m的一个因子,对于任意的r有r(mod m)=r(mod m1),仅当m=m1时成立,看着没啥问题,毕竟模m的肯定模m1,模m1的不一定模m。然后r(mod m1)=∪(r+lm1) (mod m),l是模m/m1的一组完全剩余系,右边并式中m/m1个模m的同余类两两不同。把r(mod m1)中的数按模m进行分类,对于模m1中的两个数r+k1m1,r+k2m1,要想同余,必须k1=k2(mod m/m1),那么不相同时(遍历完全剩余系时),确实是不同的,也就是确实两两不相交,并且任意的一个r+km1必属于其中一个同余类(好像是废话?就是满射?),所以r包含于r+lm1,然后r+km1模m包含于模m1,等于r模m1,双向包含,相等。

2.16 构造完全剩余系和既约剩余系:用2.12中的构造方法,有小m1,m2,找M1,M2,然后找好对于,遍历x1,x2。

2.17 这个题用了划分的思想,意思是划分后的元素一共有n个,划分方法:按照数与n的最大公因子是几分类,如果(m,n)=d,那么(m/d, n/d)=1,又小于n/d并且和它互素的个数是phi(n/d),遍历一遍求和,然后phi(n/d)又和phi(d)对应,那么其实求和phi(n/d)就是求和phi(d),得证。

2.18 求欧拉函数:唯一分解后,各素数的欧拉函数相乘(不一定非是素数),记得phi(pk)=pk-1(p-1)。证明?往外扣数,2.12

phi(m) = p1a-1(p1-1)*p2b-1(p2-1)* ... *prk-1(pr-1) = m∏p|m (1-1/p),证明?代入m乘开就行。

2.19 完全剩余系是a带着0,这个时候根据2.14,可以得到确实是对的,既约剩余系把a=0的情况删掉,会发现确实不会重复。

2.20 欧拉定理证明:首先既约剩余系中肯定是有phi(m)个数,这些数乘上一个a,保证a和m互素的情况下肯定还是遍历一个既约剩余系,那么连乘既约剩余系中的元素,等于a*既约剩余系中的元素的连乘积,提出这个a,会得到a的phi次方就是1。

2.21 首先注意得先说7和10互素,然后求各位数就模10,欧拉定理找1,直接结束。

2.22 素数的既约剩余系连乘积就是(p - 1)!啊,所以直接记(p - 1)!= - 1 (mod p)吧,这个是用的两两分完,除了1和-1之外,剩下的元素肯定有一个逆元,并且逆元不是本身,而且一一对应,唯一,(这里如果要证明的话就是如果两个自身元素相乘为1,那么有r2-1等于0,所以r为±1),所以直接把这俩元素捆绑在一起,模p就是1,最后模p剩下±1,这俩乘上以后变成了-1,所以(p - 1)!= -1 (mod p)。这个体现了两两分完的思想,记得在期中二次剩余证明那吃瘪了。

2.23 - 2.24 对于pl和2pl,这里的p不等于2,也有既约剩余系连乘积同余这个数为-1的结论,对于p的l次方,只要不是p的倍数,那么就会在既约剩余系里面,和上面那个式子相同,只有±1不能两两分开,其余的都可以两两分完,然后乘上,也能得到相同的结果,而2p的l次方则是,对于p的l次方既约剩余系中的元素,如果能被2整除,就加上一个p的l次方,变成一个奇数,也就可以不被2整除,而加上一个p的l次方以后,肯定也不会被p整除,毕竟原来的数不会被整除,加了一个可以被p整除的数,所以结果还是不会被整除的。又因为算两个数的phi值,会发现恰好相等,所以这还是个一一映射,经过这个变换以后的剩余系恰好是2p的l次方的既约剩余系,所以最后发现也是可以两两分完剩下一个1和-1。做相同操作即可。

2.25 为什么2的l次方就会有问题呢?首先看结论,当l等于1或2时,既约剩余系的连乘积为-1,l大于2时就变成了1。对于1,2,直接验证就行,对于大于2的情形,由于相同两个数做乘积得到1的数多了俩,乘起来变成了1,所以就是1了。为什么多了俩?还是(r - 1) (r + 1) = 0 (mod 2l),但是由于r-1和r+1都是2的倍数,所以其实不能直接判定r必须是±1,要约去两个2,得到(r-1)/2和(r+1)/2,这俩数相差1,肯定是互素的,这个时候对应的是2的l-2次方,所以(r-1)/2=0(mod 2l-2) 和 (r+1)/2=0(mod 2l-2),所以r同余±1模2的l-1次方,那就有±1,2l-1±1四个数。

2.26 对于任意的一个n,因为遍历的是(p - 1)!,取的应该是从1到p-1的数,把p-n到p-1的数的p去掉,就变成了-1到-n,于是得证。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值