卡尔曼滤波器是一种最优化递归数字处理算法
卡尔曼的应用非常的广泛,尤其是在导航之中。卡尔曼滤波器的广泛应用是因为在我们的生活当中存在着大量的不确定性。当我们去描述一个系统的时候不确定性主要体现在三个方面
1。不存在完美的数学模型
2。系统的扰动是不可控的,也很难建模
3。测量传感器自身的误差
例子
首先,举一个例子。如上图所示,我们请三个人测量一枚硬币。由于每个人测量的方式还有测量工具本身的误差,z为测量值,测量结果分别50.1 , 50.2 ,50.4。此时我们想要得到这个硬币的近似宽度,显然,大部分人都会想到去求平均值。
我们设为估计值。很自然能够得到他的公式。这是我们假设测量了k次,同时吧最后一次的结果zk提出来,前面的式子同时乘。这样我们就梳理得到了最后的结果。分析一下他,当k无限大的时候第二项就相当于0了,这个也很好解释,当测试的样本足够多的时候估计值就很接近真实值了。