卡尔曼滤波

卡尔曼滤波器是一种优化的递归数字处理算法,广泛应用于导航等领域,尤其适用于处理存在不确定性的系统。其核心包括卡尔曼增益,通过权衡估计误差和测量误差来更新预测。应用步骤主要包括三个阶段,适用于解决实际问题。
摘要由CSDN通过智能技术生成

卡尔曼滤波器是一种最优化递归数字处理算法

卡尔曼的应用非常的广泛,尤其是在导航之中。卡尔曼滤波器的广泛应用是因为在我们的生活当中存在着大量的不确定性。当我们去描述一个系统的时候不确定性主要体现在三个方面

1。不存在完美的数学模型

2。系统的扰动是不可控的,也很难建模

3。测量传感器自身的误差

例子 

首先,举一个例子。如上图所示,我们请三个人测量一枚硬币。由于每个人测量的方式还有测量工具本身的误差,z为测量值,测量结果分别50.1 , 50.2 ,50.4。此时我们想要得到这个硬币的近似宽度,显然,大部分人都会想到去求平均值。

我们设为估计值。很自然能够得到他的公式。这是我们假设测量了k次,同时吧最后一次的结果zk提出来,前面的式子同时乘\frac{k-1}{k-1}。这样我们就梳理得到了最后的结果。分析一下他,当k无限大的时候第二项就相当于0了,这个也很好解释,当测试的样本足够多的时候估计值就很接近真实值了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值