2023-12-27 语音转文字的whisper应用部署

文章讲述了如何在Linux和Windows环境下部署开源语音转文字工具Whisper及其C++版本whisper.cpp,涉及了安装步骤、模型选择、依赖项ffmpeg的安装和使用方法,以及不同版本之间的性能对比。
摘要由CSDN通过智能技术生成

点击 <C 语言编程核心突破> 快速C语言入门


语音转文字的whisper应用部署


前言

要解决问题: 需要一款开源的语音转文字应用, 用于视频自动转换字幕.

想到的思路: openaiwhisper以及根据这个模型开发的whisper.cppC++应用.

其它的补充: 最好在linux下部署, Windows下困难太多.


一、部署whisper

官方文档要求至少十python3.8-3.10, 同时需要ffmpeg, 要有nv的显卡, 支持cuda

直接安装部署:

pip install -U openai-whisper

期间会安装5-6g的相关文件, 都是显卡相关和cuda相关的东西, 如果不换成国内的源, 估计是不太可能安装完的.

SizeParametersEnglish-only modelMultilingual modelRequired VRAMRelative speed
tiny39 Mtiny.entiny~1 GB~32x
base74 Mbase.enbase~1 GB~16x
small244 Msmall.ensmall~2 GB~6x
medium769 Mmedium.enmedium~5 GB~2x
large1550 MN/Alarge~10 GB1x

需要下载相应的训练文件, 带.en的是纯英文的, 其它的是多语言的.

越大越慢, 同时耗费的内存及显存越多, 一般我用smallbase, 再大的就干不动了.

如果是Linux通常是下载时间问题, 而Windows那就是跟自己过意不去, 各种错误, 我是解决不了直接放弃了, 转wsl debian.

使用比较容易, 我一般用命令行, 毕竟没想着部署到服务器给其他人用, 毕竟是真耗费资源, 自己玩玩就可以了.

'/home/lhb/.local/bin/whisper'  --model base  --language Chinese '/home/lhb/Cpp/voice/极简SQL_0_课程邀请.mp3' --output_format vtt

我的模型部署后, 系统提示没有放进PATH中, 所以需要把脚本的绝对路径写上,

model参数是选择你用的模型, 我一般用base或small, tiny基本是个玩具, 不可用, 其他的我的硬件带不起来.

语言是你的是啥就选啥, 好像支持九十多种, 一般就是英语和中文.

请务必安装ffmpeg, 这个是必选项, 没有它啥也干不了. 因为无论音频还是视频解码都是它.

whisper模型一般装ffmpeg后, 大部分文件都可转换.

输出格式, 可以有四五种, 字幕或直接txt, 我就选vtt, 目前比较通用.

效果目前看还可以, 我是给自己的课程加字幕, 对于中文, 准确率估计不会小于80%, 需要修修补补, 英文貌似效果不错.

二、部署whisper.cpp

对于没资源的同志们, 有个好消息, 有位大神, 不, 是一堆大神, 将whisper搞成cpp版了, 而且可以直接在msys2资源管理平台安装!

这是Windows使用者的福音, 这是没有nv显卡的穷人的福音.

但是, 你还是绕不过ffmpeg, 在windows下安装whisper.cpp只需要一句:

$ pacman -S mingw-w64-clang-x86_64-whisper.cpp

系统会自动帮你安装所有的依赖, 但是轮到ffmpeg, 以下命令了解一下.

$ pacman -S mingw-w64-clang-x86_64-ffmpeg mingw-w64-clang-x86_64-aom mingw-w64-clang-x86_64-bzip2 mingw-w64-clang-x86_64-dav1d mingw-w64-clang-x86_64-fontconfig mingw-w64-clang-x86_64-frei0r-plugins mingw-w64-clang-x86_64-fribidi mingw-w64-clang-x86_64-gmp mingw-w64-clang-x86_64-gnutls mingw-w64-clang-x86_64-gsm mingw-w64-clang-x86_64-lame mingw-w64-clang-x86_64-libass mingw-w64-clang-x86_64-libbluray mingw-w64-clang-x86_64-libcaca mingw-w64-clang-x86_64-libexif mingw-w64-clang-x86_64-libgme mingw-w64-clang-x86_64-libiconv mingw-w64-clang-x86_64-libmodplug mingw-w64-clang-x86_64-libplacebo mingw-w64-clang-x86_64-librsvg mingw-w64-clang-x86_64-libsoxr mingw-w64-clang-x86_64-libssh mingw-w64-clang-x86_64-libtheora mingw-w64-clang-x86_64-libva mingw-w64-clang-x86_64-libvorbis mingw-w64-clang-x86_64-libvpx mingw-w64-clang-x86_64-libwebp mingw-w64-clang-x86_64-libx264 mingw-w64-clang-x86_64-libxml2 mingw-w64-clang-x86_64-onevpl mingw-w64-clang-x86_64-openal mingw-w64-clang-x86_64-opencore-amr mingw-w64-clang-x86_64-openjpeg2 mingw-w64-clang-x86_64-opus mingw-w64-clang-x86_64-rav1e mingw-w64-clang-x86_64-rtmpdump mingw-w64-clang-x86_64-SDL2 mingw-w64-clang-x86_64-speex mingw-w64-clang-x86_64-srt mingw-w64-clang-x86_64-svt-av1 mingw-w64-clang-x86_64-vid.stab mingw-w64-clang-x86_64-vulkan mingw-w64-clang-x86_64-x265 mingw-w64-clang-x86_64-xvidcore mingw-w64-clang-x86_64-zimg mingw-w64-clang-x86_64-zlib

这还没玩, 如果你安装的库中有版本不匹配的, 哈哈, 找错去吧, 没个几小时是万万不能安装成功的.

此版本的使用方法:

需要将视频或音频文件转换为16khzwav文件, 文件转换非常快, 只要你能装好ffmpeg.

然后调用whisper.cpp.exe文件, -m是模型, 模型与上边的不通用! 需要再下载一波.

其它的差不多, 告诉语言, 我们一般是中文, 这里使用zh, 不能用Chinese, -ovtt是输出格式.

ffmpeg -i D:\极简SQL\课程视频\极简SQL_0_课程邀请.mp4 -ar 16000 -ac 1 -c:a pcm_s16le e:\clangC++\voiceToText\srt.wav

whisper.cpp -m e:\clangC++\voiceToText\ggml-model-whisper-base.bin -l zh e:\clangC++\voiceToText\srt.wav -ovtt

whisper.cpp -m e:\clangC++\voiceToText\ggml-model-whisper-small.bin -l zh e:\clangC++\voiceToText\srt.wav -ovtt

效果和openai的原版有少许不同, 估计是训练模型不一致导致的, 但大差不差, 正确率完全一样.


总结

请开始你的字幕自动加载吧.


点击 <C 语言编程核心突破> 快速C语言入门


Colab Whisper模型是一种先进的语音文字模型,它基于语音识别技术,利用深度学习算法将语音信号换为文本。 Colab Whisper模型的实现步骤如下: 1. 准备数据:首先,需要准备用于训练模型语音数据集。这些语音数据应该包含不同人的不同语音片段,涵盖不同的语言和口音。 2. 数据预处理:接下来,需要对语音数据进行预处理。这包括对语音信号进行采样和分割,去除噪音和不必要的部分,并将其换为模型可处理的格式,例如MFCC特征。 3. 构建模型:使用深度学习框架,如TensorFlow或PyTorch,构建Colab Whisper模型。该模型通常由多个卷积神经网络和循环神经网络层组成,用于提取语音信号的特征并进行序列建模。 4. 训练模型:使用准备好的语音数据集,通过反向传播算法和训练集的迭代,对模型进行训练。在每个迭代步骤中,模型会根据预测输出与实际标签之间的差异调整自身的权重和参数,以提高预测准确性。 5. 模型评估和优化:在每个训练周期结束后,使用验证集和测试集对模型进行评估。评估指标可以包括词错误率(WER)和字符错误率(CER)。通过这些指标,可以确定模型的性能,并对其进行改进。 6. 部署应用:一旦模型训练完成并通过评估,就可以将其部署到实际应用中。通过输入语音信号,模型将对其进行换,并输出相应的文本结果。 总之,Colab Whisper模型通过深度学习算法实现了从语音到文本的换。通过准备数据、进行数据预处理、构建模型、训练模型、评估和优化以及部署应用等步骤,可以实现一个高效准确的语音文字系统。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不停感叹的老林_<C 语言编程核心突破>

不打赏的人, 看完也学不会.

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值