Windows部署语音转文字项目_Whisper

本文详细介绍了如何在Windows系统上部署Whisper语音转文字工具,包括使用pip从GitHub仓库或国内镜像源安装,以及安装依赖如ffmpeg。同时提供了不同模型的选择和使用示例,遇到网络问题时的解决方案也被提及。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows部署语音转文字项目_Whisper

一、前置安装准备

Github源仓库,Whisper

  1. 下载安装whisper及其依赖项
    官方有两种部署方法,一种是通过默认pip源拉取安装:
    以管理员身份运行powershell,输入如下命令
    pip install -U openai-whisper
    因国内网络环境问题,pip下载缓慢,可以通过国内镜像源加速下载,使用方法:
    pip install PACKAGE -i 国内源地址
    国内常用镜像源:  
    清华源:https://pypi.tuna.tsinghua.edu.cn/simple (速度与完成度均优,推荐)  
    阿里源:https://mirrors.aliyun.com/pypi/simple/  
    网易源:https://mirrors.163.com/pypi/simple/  
    豆瓣源:https://pypi.douban.com/simple/  
    百度云源:https://mirror.baidu.com/pypi/simple/
    
    例如使用清华源加速下载:
    pip install -U openai-whisper -i https://pypi.tuna.tsinghua.edu.cn/simple
    另一种方法通过从github仓库拉取源码安装:
    pip install git+https://github.com/openai/whisper.git
    等待下载安装完成。
    若安装成功,在powershell中输入whisper将得到以下输出:
    图1
  2. 安装chocolatey
    安装chocolatey是为了方便后续在Windows中安装ffmpeg
    继续在powershell中输入如下命令:
    Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
    在安装完成后,根据提示重启powershell,可输入choco检查是否成功安装:
    图2
  3. 安装ffmpeg
    在以管理员身份运行的powershell中输入命令进行安装ffmpeg:
    choco install ffmpeg
    安装完成后在powershell中输入ffmpeg将得到以下输出:
    图3
  4. NOTE
    在官方文档中提到若在上述安装过程中报错还须安装rust,安装命令如下:
    pip install setuptools-rust
    本文此前已完成安装

二、使用Whisper

可以通过命令行调用Whisper:
whisper AUDIO.mp3 --model MODEL_TYPE
即,whisper 路径+文件名 --model 调用模型名称
使用例子:
whisper D:/downloads/ted演讲.mp4 --model tiny
whisper有五种不同的模型,详细开销和运行速度如下图表所示:
图4
首次使用模型需要下载,若出现报错Error 10054代码,则说明网络环境出现问题,进行全局代理再次运行命令下载模型即可。
此外,也可以指定语言识别输出:
whisper AUDIO.mp3 --model MODEL_TYPE --language Chinese

<think>好的,我现在需要帮助用户实现一个Python的语音文字点歌系统。首先,我得理清楚用户的需求。用户想通过语音识别将用户的语音换成文字,然后根据这个文字内容来点歌。这涉及到几个关键步骤:语音识别、文本处理、歌曲搜索和播放。 首先,我得考虑语音识别部分。Python中常用的库有SpeechRecognition,它支持多种后端引擎,比如Google的API,这在引用[4]里提到过。用户可能需要安装这个库,并且需要联网使用,因为Google的API需要网络连接。另外,还要处理麦克风的输入,所以可能需要PyAudio库。 接下来是文本处理。用户说出歌曲名或歌手名后,系统需要提取关键词。比如用户说“我想听周杰伦的七里香”,系统需要提取“周杰伦”和“七里香”作为搜索关键词。这里可能需要用到正则表达式或者自然语言处理的基础方法,比如分词。不过考虑到用户可能只是简单实现,可以先做简单的字符串处理,比如去掉“我想听”之类的词,剩下的作为关键词。 然后是歌曲搜索部分。需要有一个歌曲库,或者接入现有的音乐API。但用户可能没有自己的歌曲库,所以可以考虑使用第三方API,比如QQ音乐或网易云音乐的API,不过这些可能需要申请权限或者有使用限制。如果只是本地演示,可以准备一个本地的歌曲目录,用文件名来匹配。比如在代码中维护一个字典,将歌曲名映射到本地文件路径,这样当搜索到关键词时,直接播放对应的文件。 播放歌曲的话,Python有几个库可以选择,比如playsound,它简单易用,但功能较少;或者pygame,功能更强大,支持更多音频格式和控制。用户可能需要根据实际需求选择,如果只是播放MP3文件,playsound可能更简单。 整个流程需要整合这些模块。首先录音,换成文字,处理文字得到关键词,搜索歌曲,最后播放。代码结构大概分为这几个函数:录音和语音识别、文本处理、搜索歌曲、播放歌曲。 还要考虑异常处理,比如识别失败的情况,或者找不到歌曲的情况,需要给出提示。另外,可能需要一个循环,让用户可以多次点歌,直到退出。 关于引用,用户提供的引用中有提到语音识别相关的系统,比如引用[1]中的Whisper+GPT-4+Google Translate的组合,但这里可能不需要那么复杂,用SpeechRecognition库已经足够。引用[3]提到音频信号的基础知识,可能对理解音频处理有帮助,但实际代码中可能不需要深入这些细节。引用[4]提到Python的开源项目,比如Flask,但这里可能暂时不需要用到Web框架,除非用户想扩展成Web应用。 测试方面,可能需要用户先准备好测试用的音频文件,或者直接通过麦克风输入。另外,需要确保依赖库正确安装,比如SpeechRecognition和PyAudio在安装时可能会有平台相关的问题,特别是PyAudio在Windows上可能需要安装PortAudio。 总结步骤: 1. 使用SpeechRecognition库进行语音输入和识别。 2. 处理识别后的文本,提取歌曲关键词。 3. 根据关键词搜索本地或在线歌曲库。 4. 使用音频播放库播放找到的歌曲。 现在需要把这些步骤化成具体的代码,同时处理可能的异常,比如识别错误或歌曲不存在的情况。此外,可能需要一个简单的用户界面,比如命令行提示,让用户知道什么时候可以说话,或者显示搜索结果。</think>根据需求实现Python语音文字点歌系统,可分为四个核心步骤,以下是具体实现方案: ### 一、系统架构设计 ``` 语音输入 -> 语音识别 -> 文本处理 -> 歌曲搜索 -> 音频播放 ``` ### 二、核心代码实现 ```python import speech_recognition as sr from playsound import playsound import os # 本地歌曲库示例(需提前准备MP3文件) SONG_LIBRARY = { "七里香": "周杰伦_七里香.mp3", "夜曲": "周杰伦_夜曲.mp3", "青花瓷": "周杰伦_青花瓷.mp3" } def voice_to_text(): """语音识别模块""" r = sr.Recognizer() with sr.Microphone() as source: print("请说出歌曲名称(例如:播放七里香)") audio = r.listen(source, timeout=5) try: text = r.recognize_google(audio, language='zh-CN') print("识别结果:" + text) return text except sr.UnknownValueError: print("无法识别语音") return None def process_command(text): """文本处理模块""" keywords = ["播放", "我要听", "点歌"] for kw in keywords: text = text.replace(kw, "") return text.strip() def search_song(keyword): """歌曲搜索模块""" for song in SONG_LIBRARY: if keyword in song: return SONG_LIBRARY[song] return None def play_song(filename): """音频播放模块""" if os.path.exists(filename): playsound(filename) else: print(f"歌曲文件{filename}不存在") if __name__ == "__main__": while True: text = voice_to_text() if text: keyword = process_command(text) song_file = search_song(keyword) if song_file: play_song(song_file) else: print("未找到相关歌曲") ``` ### 三、关键技术实现 1. **语音识别优化** - 使用噪声抑制提升识别准确率 ```python with sr.Microphone() as source: r.adjust_for_ambient_noise(source) # 环境噪声抑制 ``` 2. **扩展音乐库接入** ```python # 接入网易云API示例 import requests def search_online_song(keyword): api_url = "http://music.163.com/api/search/get/" params = { "s": keyword, "type": 1, "limit": 1 } response = requests.get(api_url, params=params) return response.json()["result"]["songs"][0]["mp3Url"] ``` 3. **播放控制增强** ```python # 使用pygame实现播放控制 import pygame def play_with_control(filename): pygame.mixer.init() pygame.mixer.music.load(filename) pygame.mixer.music.play() while pygame.mixer.music.get_busy(): command = input("暂停(p)/继续(c)/停止(s):") if command == 'p': pygame.mixer.music.pause() elif command == 'c': pygame.mixer.music.unpause() elif command == 's': pygame.mixer.music.stop() break ``` ### 四、部署与优化建议 1. **环境配置** ```bash pip install SpeechRecognition pyaudio playsound pygame ``` 2. **性能优化方向** - 采用多线程处理语音输入和播放 - 添加本地语音模型(如Vosk)实现离线识别 - 集成歌词同步显示功能(参考引用[2]的歌词处理方案) 3. **异常处理增强** ```python try: # 原有代码 except sr.RequestError as e: print(f"语音服务不可用:{str(e)}") except KeyboardInterrupt: print("系统已退出") exit() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值