使用 Scikit-Learn 的人工数据集,老师讲的真棒

  • (255, 0, 0)

  • (245, 107, 0)

  • (206, 99, 1)

  • (255, 254, 101)

花萼的平均直径为:

  • 3.8

  • 3.3

  • 4.1

  • 2.9

| Flos pythonem

(254, 0, 0) | Flos Java

(245, 107, 0) |

| — | — |

| 弗洛斯玛格丽塔

(206, 99, 1) | 人工花链

(255, 254, 101) |

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

scipy.stats 导入 truncnorm

def truncated_normal ( mean = 0 , sd = 1 , low = 0 , upp = 10 , type = int ):

return truncnorm (

( low - mean ) / sd , ( upp - mean ) / sd , loc = mean , scale = sd )

def truncated_normal_floats ( mean = 0 , sd = 1 , low = 0 , upp = 10 , num = 100 ):

res = truncated_normal ( mean = mean , sd = sd , low = low , upp = upp )

返回 res 。RVS (NUM )

def truncated_normal_ints ( mean = 0 , sd = 1 , low = 0 , upp = 10 , num = 100 ):

res = truncated_normal ( mean = mean , sd = sd , low = low , upp = upp )

返回 res 。RVS (NUM )。类型( np .uint8 )

#项为每个花类的数目:

number_of_items_per_class = [ 190 , 205 , 230 , 170 ]

花 = {}

#FLOS Pythonem:

NUMBER_OF_ITEMS = number_of_items_per_class [ 0 ]

的红色 = truncated_normal_ints (平均值= 254 , SD = 18 , 低= 235 , upp = 256 ,

num = number_of_items )

果岭 = truncated_normal_ints (平均值= 107 , SD = 11 , 低= 88 , UPP = 127 ,

NUM = NUMBER_OF_ITEMS )

蓝调 = truncated_normal_ints (平均值= 0 , SD = 15 , 低= 0 , UPP = 20 ,

NUM = NUMBER_OF_ITEMS )

calyx_dia = truncated_normal_floats ( 3.8, 0.3 , 3.4 , 4.2 ,

num = number_of_items )

data = np . column_stack (( reds , greens , blues , calyx_dia ))

花[ “flos_pythonem” ] = 数据

#FLOS爪哇:

NUMBER_OF_ITEMS = number_of_items_per_class [ 1 ]

的红色 = truncated_normal_ints (平均值= 245 , SD = 17 , 低= 226 , UPP = 256 ,

NUM = NUMBER_OF_ITEMS )

果岭 = truncated_normal_ints (平均值= 107 , SD = 11 , 低= 88 , upp = 127 ,

NUM = NUMBER_OF_ITEMS )

蓝调 = truncated_normal_ints (平均值= 0 , SD = 10 , 低= 0 , UPP = 20 ,

NUM = NUMBER_OF_ITEMS )

calyx_dia = truncated_normal_floats (3.3 , 0.3 , 3.0 , 3.5 ,

NUM = NUMBER_OF_ITEMS )

数据 = NP 。column_stack ((红色, greens , blues , calyx_dia ))

花[ “flos_java” ] = 数据

#FLOS爪哇:

NUMBER_OF_ITEMS = number_of_items_per_class [ 2 ]

红色 = truncated_normal_ints (平均值= 206 , SD = 17 , 低= 175 , UPP = 238 ,

NUM = NUMBER_OF_ITEMS )

果岭 = truncated_normal_ints (平均= 99 , SD = 14 , 低= 80 , upp = 120 ,

NUM = NUMBER_OF_ITEMS )

蓝调 = truncated_normal_ints (平均值= 1 , SD = 5 , 低= 0 , UPP = 12 ,

NUM = NUMBER_OF_ITEMS )

calyx_dia = truncated_normal_floats (4.1 , 0.3 , 3.8 , 4.4 ,

NUM = NUMBER_OF_ITEMS )

数据 = NP 。column_stack ((红色, greens , blues , calyx_dia ))

花[ “flos_margarita” ] = 数据

#FLOS artificialis:

NUMBER_OF_ITEMS = number_of_items_per_class [ 3 ]

的红色 = truncated_normal_ints (平均值= 255 , SD = 8 , 低= 2245 , UPP = 2255 ,

NUM = NUMBER_OF_ITEMS )

果岭 = truncated_normal_ints (平均值= 254 , SD = 10 , 低= 240 , 向上= 255,

NUM = NUMBER_OF_ITEMS )

蓝调 = truncated_normal_ints (平均值= 101 , SD = 5 , 低= 90 , UPP = 112 ,

NUM = NUMBER_OF_ITEMS )

calyx_dia = truncated_normal_floats (2.9 , 0.4 , 2.4 , 3.5 ,

NUM = NUMBER_OF_ITEMS )

数据 = NP 。column_stack ((reds , greens , blues , calyx_dia ))

花[ “flos_artificialis” ] = 数据

数据 = np 。连接((花[ “flos_pythonem” ],

花[ “flos_java” ],

花[ “flos_margarita” ],

花[ “flos_artificialis” ]

), 轴= 0 )

# 分配标签

target = np . zeros ( sum ( number_of_items_per_class )) # 4 朵花

previous_end = 0

for i in range ( 1 , 5 ):

num = number_of_items_per_class [ i - 1 ]

beg = previous_end

target [ beg : beg + num ] += i

previous_end = beg + num

conc_data = np . 连接(( data , target . reshape ( target . shape [ 0 ], 1 )),

axis = 1 )

NP . savetxt ( “data/strange_flowers.txt” , conc_data , fmt = " %2.2f " ,)

导入 matplotlib.pyplot 作为 plt

target_names = 列表(花朵。键())

feature_names = [ ‘红’ , ‘绿色’ , ‘蓝’ , ‘花萼’ ]

ñ = 4

无花果, 斧 = PLT 。子图( n , n , figsize = ( 16 , 16 ))

颜色 = [ ‘蓝色’ 、 ‘红色’ 、 ‘绿色’ 、 ‘黄色’ ]

for x in range ( n ):

for y in range ( n ):

xname = feature_names [ x ]

yname = feature_names [ y ]

for color_ind in range ( len ( target_names )):

ax [ x , y ] 。分散(数据[目标== color_ind , x ],

数据[ target == color_ind , y ],

label = target_names [ color_ind ],

c = colors [ color_ind ])

轴[ x , y ] 。set_xlabel ( xname )

ax [ x , y ] 。set_ylabel ( yname )

ax [ x , y ] 。图例(loc = ‘左上’ )

PLT 。显示()

使用 Scikit-Learn 生成合成数据


使用 Scikit-Learn 的可能性来创建合成数据要容易得多。

sklearn 中可用的功能可以分为

  1. 用于分类和聚类的生成器

  2. 用于创建回归数据的生成器

  3. 流形学习生成器

  4. 分解生成器

分类和聚类生成器

我们先从功能make_blobssklearn.datasets打造“斑点”状数据分布。通过将 的值设置centersn_classes,我们确定了 blob 的数量,即集群。n_samples对应于在集群中平均分配的点总数。如果random_state没有设置,我们每次调用函数都会有随机结果。我们将一个 int 传递给这个参数,以便在多个函数调用中重现输出。

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

n_classes = 4

数据, 标签 = make_blobs (n_samples = 1000 ,

中心= n_classes ,

random_state = 100 )

标签[: 7 ]

输出:

数组([1, 3, 1, 3, 1, 3, 2])

我们将使用 matplotlib 可视化先前创建的 blob custers:

图, ax = plt 。子图()

颜色 = (‘绿色’ , ‘橙色’ , ‘蓝’ , “粉红色” )

标签 范围(n_classes ):

斧。分散( x =数据[标签==标签, 0 ],

y =数据[标签==标签, 1 ],

c =颜色[标签],

s = 40 ,

标签=标签)

斧头。设置(xlabel = ‘X’ ,

ylabel = ‘Y’ ,

title = ‘Blob 示例’ )

斧头。图例(loc = ‘右上角’ )

输出:

<matplotlib.legend.Legend 在 0x7f1c3f9d0e80>

在前面的例子中,blob 的中心是随机选择的。在以下示例中,我们明确设置了 blob 的中心。我们创建一个包含中心点的列表并将其传递给参数centers

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

中心 = [[ 2 , 3 ], [ 4 , 5 ], [ 7 , 9 ]]

数据, 标签 = make_blobs (N_SAMPLES次= 1000 ,

中心= NP 。阵列(中心),

random_state = 1 )

标签[: 7 ]

输出:

数组([0, 1, 1, 0, 2, 2, 2])

让我们看看之前创建的 blob 集群:

图, ax = plt 。子图()

颜色 = (‘绿’ , ‘橙’ , ‘蓝’ )

标签 范围len个(中心)):

斧。分散( x =数据[标签==标签, 0 ],

y =数据[标签==标签, 1 ],

c =颜色[标签],

s = 40 ,

标签=标签)

斧头。设置(xlabel = ‘X’ ,

ylabel = ‘Y’ ,

title = ‘Blob 示例’ )

斧头。图例(loc = ‘右上角’ )

输出:

<matplotlib.legend.Legend 在 0x7f1c3f363370>

通常,您希望将人工创建的数据集保存在文件中。为此,我们可以使用savetxtnumpy 中的函数。在我们这样做之前,我们必须重新排列我们的数据。每行都应包含数据和标签:

numpy 导入****为 np

标签 = 标签。重塑((标签。形状[ 0 ],1 ))

all_data = NP 。连接((数据, 标签), 轴= 1 )

all_data [:7 ]

输出:

数组([[ 1.72415394, 4.22895559, 0. ],

[ 4.16466507, 5.77817418, 1. ],

[ 4.51441156, 4.98274913, 1. ],

[ 1.49102772, 2.83351405, 0. ],

[ 6.0386362 , 7.57298437, 2. ],

[ 5.61044976, 9.83428321, 2. ],

[ 5.69202866, 10.47239631, 2. ]])

对于某些人来说,理解 reshape 和 concatenate 的组合可能很复杂。因此,您可以在以下代码中看到一个极其简单的示例:

numpy 导入****为 np

a = np 。数组( [[ 1 , 2 ], [ 3 , 4 ]])

b = np 。数组( [ 5 , 6 ])

b = b 。reshape (( b . shape [ 0 ], 1 ))

打印( b )

x = np 。连接( ( a , b ), 轴= 1 )

x

输出:

[[5]

[6]]

数组([[1, 2, 5],

[3, 4, 6]])

我们使用numpy函数savetxt来保存数据。不要担心这个奇怪的名字,它只是为了好玩,原因很快就会清楚:

NP . savetxt ( “squirrels.txt” ,

all_data ,

fmt = [ ’ %.3f ’ , ’ %.3f ’ , ’ %1d ’ ])

all_data [: 10 ]

输出:

数组([[ 1.72415394, 4.22895559, 0. ],

[ 4.16466507, 5.77817418, 1. ],

[ 4.51441156, 4.98274913, 1. ],

[ 1.49102772, 2.83351405, 0. ],

[ 6.0386362 , 7.57298437, 2. ],

[ 5.61044976, 9.83428321, 2. ],

[ 5.69202866, 10.47239631, 2. ],

[ 6.14017298, 8.56209179, 2. ],

[ 2.97620068, 5.56776474, 1. ],

[ 8.27980017, 8.54824406, 2. ]])

读取数据并将其转换回“数据”和“标签”


我们将展示现在,如何在数据再次读取以及如何将其拆分成datalabels再次:

文件数据 = np 。loadtxt ( “squirrels.txt” )

数据 = file_data [:,:- 1 ]

标签 = file_data [:,2 :]

标签 = 标签。重塑((标签。形状[ 0 ]))

我们将数据文件称为squirrels.txt,因为我们想象了一种生活在撒哈拉沙漠中的奇怪动物。x 值代表动物的夜视能力,y 值对应毛皮的颜色,从浅褐色变为黑色。我们有3种松鼠,0、1和2。(注意我们的松鼠是想象中的松鼠,与真正的撒哈拉松鼠没有任何关系!)

导入 matplotlib.pyplot 作为 plt

颜色 = (“绿色” 、 “红色” 、 “蓝色” 、 “洋红色” 、 “黄色” 、 “青色” )

n_classes = 3

图, ax = plt 。副区()

n_class 范围(0 , n_classes ):

斧。分散(数据[标签== n_class , 0 ], 数据[标签== n_class , 1 ],

c =颜色[ n_class ], s = 10 , 标签= str (n_class ))

斧头。set ( xlabel = ‘Night Vision’ ,

ylabel = '毛色从浅褐色到黑色, 0 到 10 ’ ,

title = ‘Sahara Virtual Squirrel’ )

斧头。图例(loc = ‘右上角’ )

输出:

<matplotlib.legend.Legend 在 0x7f1c3f2dfcd0>

我们将在以下代码中训练我们的人工数据:

sklearn.model_selection 导入 train_test_split

data_sets = train_test_split ( data ,

labels ,

train_size = 0.8 ,

test_size = 0.2 ,

random_state = 42 #保证每次运行的输出相同

)

train_data , test_data , train_labels , test_labels = data_sets

#

sklearn.neighbors 导入 模型import KNeighborsClassifier

# 创建分类器

knn = KNeighborsClassifier ( n_neighbors = 8 )

# 训练

knn 。适合(train_data , train_labels )

# 对测试数据进行测试:

calculated_labels = knn . 预测(测试数据)

计算标签

输出:

数组([2., 0., 1., 1., 0., 1., 2., 2., 2., 2., 0., 1., 0., 0., 1., 0. , 1.,

2., 0., 0., 1., 2., 1., 2., 2., 1., 2., 0., 0., 2., 0., 2., 2., 0. ,

0., 2., 0., 0., 0., 1., 0., 1., 1., 2., 0., 2., 1., 2., 1., 0., 2. ,

1., 1., 0., 1., 2., 1., 0., 0., 2., 1., 0., 1., 1., 0., 0., 0., 0. ,

0., 0., 0., 1., 1., 0., 1., 1., 1., 0., 1., 2., 1., 2., 0., 2., 1. ,

1., 0., 2., 2., 2., 0., 1., 1., 1., 2., 2., 0., 2., 2., 2., 2., 0. ,

0., 1., 1., 1., 2., 1., 1., 1., 0., 2., 1., 2., 0., 0., 1., 0., 1. ,

0., 2., 2., 2., 1., 1., 1., 0., 2., 1., 2., 2., 1., 2., 0., 2., 0. ,

0., 1., 0., 2., 2., 0., 0., 1., 2., 1., 2., 0., 0., 2., 2., 0., 0. ,

1., 2., 1., 2., 0., 0., 1., 2., 1., 0., 2., 2., 0., 2., 0., 0., 2. ,

1., 0., 0., 0., 0., 2., 2., 1., 0., 2., 2., 1., 2., 0., 1., 1., 1. ,

0., 1., 0., 1., 1., 2., 0., 2., 2., 1., 1., 1., 2.])

sklearn 导入 指标

打印(“精度:” , 度量。accuracy_score (test_labels , calculated_labels ))

输出:

准确度:0.97

其他有趣的分布


numpy 导入****为 np

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频

如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
img

, 1., 1., 2., 0., 2., 2., 1., 1., 1., 2.])

sklearn 导入 指标

打印(“精度:” , 度量。accuracy_score (test_labels , calculated_labels ))

输出:

准确度:0.97

其他有趣的分布


numpy 导入****为 np

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频

如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
[外链图片转存中…(img-Us3sryY5-1711210828471)]

  • 23
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 使用scikit-learn导入数据集的步骤如下: 1. 导入需要的数据集模块,例如: from sklearn.datasets import load_iris 2. 加载数据集,例如: iris = load_iris() 3. 查看数据集的特征和标签,例如: X = iris.data # 特征 y = iris.target # 标签 4. 对数据集进行划分,例如: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=42) 5. 对数据集进行预处理,例如: from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) 6. 最后,使用导入的模型进行训练和预测。 ### 回答2: Scikit-learn是一个常用的Python机器学习库,可以用于导入、处理和建模。其中,导入数据集是进行数据处理和建模的第一步,本文主要介绍如何使用Scikit-learn导入数据集Scikit-learn提供了多种导入数据集的方式,常见的有手动导入和使用内置数据集。下面我们分别进行介绍。 手动导入数据集的步骤如下: 1. 使用Python自带的csv库或Pandas库读取数据文件,例如读取csv文件: ```python import csv with open('data.csv', 'r') as f: reader = csv.reader(f) data = [row for row in reader] ``` 或者使用Pandas库读取: ```python import pandas as pd data = pd.read_csv('data.csv') ``` 2. 将数据集划分为特征矩阵和标签向量。特征矩阵包含了描述数据集中每个样本的特征(或属性)的值,通常用二维数组表示。标签向量包含了与特征矩阵中的每个样本相对应的目标变量或响应变量,通常用一维数组表示。 例如,假设数据集包含两个特征(或属性)和一个目标变量,那么可以将数据集划分为特征矩阵和标签向量: ```python import csv with open('data.csv', 'r') as f: reader = csv.reader(f) data = [row for row in reader] # 划分特征矩阵和标签向量 X = [[float(x) for x in row[:-1]] for row in data] y = [float(row[-1]) for row in data] ``` 或者使用Pandas库读取: ```python import pandas as pd data = pd.read_csv('data.csv') # 划分特征矩阵和标签向量 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values ``` 使用内置数据集的步骤如下: Scikit-learn提供了多个内置数据集,可以方便地通过库函数导入。例如,可以使用load_iris函数导入鸢尾花数据集: ```python from sklearn.datasets import load_iris # 导入鸢尾花数据集 iris = load_iris() # 特征矩阵 X = iris.data # 标签向量 y = iris.target ``` 总结起来,使用Scikit-learn导入数据集的步骤包括:读取数据文件或使用内置数据集,划分特征矩阵和标签向量。 ### 回答3: scikit-learn 是一个数据科学工具包,提供了许多用于导入和处理数据集的方法。要使用 scikit-learn 导入数据集,可以按照以下步骤进行: 1. 首先,需要确定数据集的格式。scikit-learn 支持许多常见的数据格式,包括 CSV、JSON、Excel、SQLite 数据库等。具体选择哪种格式取决于数据集的大小和内容。 2. 接下来,可以使用 scikit-learn 中的相应工具类来读取数据。例如,可以使用 pandas 库中的 read_csv() 函数来读取 CSV 文件,或者使用 scikit-learn 中的 load_iris() 函数来加载经典的鸢尾花数据集。 3. 读取数据后,通常需要进行数据清洗和预处理,以确保数据集能够适用于模型训练。这包括删除缺失值、对连续数据进行标准化或归一化等步骤。scikit-learn 提供了许多数据处理的工具类,例如 Imputer 类用于处理缺失值,StandardScaler 类用于对连续数据进行标准化等。 4. 最后,可以将处理后的数据集用于模型的训练和测试。scikit-learn 提供了许多常用的机器学习算法,并且对于每个算法也提供了相应的参数调整工具和评估方法,用户可以根据具体情况进行选择和使用。 综上所述,使用 scikit-learn 导入数据集的过程涉及到数据读取、清洗和预处理、模型训练和测试等多个步骤,这需要用户对于 scikit-learn 工具包有一定的了解和掌握。同时,也需要用户对于具体的数据集和问题进行分析和思考,以便能够选择合适的数据处理方法和模型算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值