数据分析项目——深圳二手房价分析及价格预测

目录

一、需求说明

1.1基本任务

 1.2 任务目的

1.3测试数据

二、概要设计说明

 

 三、详细设计

3.1 数据检测模块

 3.2 因变量分析模块

 3.3 自变量分析模块

 3.4 可视化模块

3.5 建立预测模型模块

 3.6预测模块


一、需求说明

深圳二手房数据分析及价格预测的总体目标:基于Python数据科学基础,利用所学Python语言和数据分析的相关知识,对深圳二手房价数据进行分析和建立房价预测模型进行预测,实现数据合并对数据质量进行检测和自变量与因变量进行可视化分析建立预测模型,并能使用户通过其显示结果和可视化对每种特征的变化有一个直观的了解,从而达到二手房价预测的目的。

1.1基本任务

  1. 数据质量检验,筛选出有价值的数据。
  2. 因变量分析:对单位房价进行分析。
  3. 自变量分析和可视化:实现对深圳二手房价各种特征的分析。包括分类变量和连续变量。
  4. 对数据集进行抽样。分训练数据和测试数据作测试。对数据进行二分类处理,分类变量生产哑变量。
  5. 线性回归模型,对房价进行预测。

 1.2 任务目的

1.数据检测模块

本模块的主要目的是导入数据集对数据进行合并,数据检测,数据预处理,使数据更加有合理性。

2.因变量分析模块

本模块的主要目的是对单位面积房价分析,显示直方图单位面积房价各区变化,防止出现异常值的错误。

3.自变量分析模块

本模块的主要目的是对自变量分析,查看整体数据有没有异常值,分为分类变量和连续变量,更好的查看。

4.自变量对因变量可视化模块

本模块的主要目的是利用可视化,可以更直观的展现这些自变量是否对因变量有影响,相关度大不大,为下面的预测提供更好的数据。

5.建立预测模型模块

本模块的主要目的是划分数据集,对数据进行更一步的处理,对模型进行训练,为下一个模块更好的预测。

6. 预测模块

本模块的主要目的是预测一个客户所需求的房子的房价

1.3测试数据

  1. 找一个条件为南山区、有3个房间、面积大概再80㎡、有地铁、学区房的房子的大概花费

二、概要设计说明

数据检测模块

自变量分析模块

因变量分析模块

可视化模块

建立预测模型模块

预测模块

 三、详细设计

3.1 数据检测模块

导入库读取数据

import pandas as pd
import os
file_path="D:\jupyter\data"
#读取file_path目录下的所有文件
file_name=os.listdir(file_path)
df=pd.DataFrame()
#读取数据
for i in file_name:
    file=pd.read_excel(os.path.join(file_path,i))
    df=df.append(file)
df.head()
print(df.describe()) #查看数据描述

数据的处理(异常值,重复值,缺失值)

df=df.drop(columns='Unnamed: 0')
#缺失值
df.isna().sum()  #是否有缺失值总数
#重复值
df.duplicated().sum()
#删除重复值
df=df.drop_duplicates()
area_map={'baoan':'宝安','dapengxinqu':'大鹏新区','futian':'福田','guangming':'光明',
          'longhua':'龙华','luohu':'罗湖','nanshan':'南山','pingshan':'坪山','yantian':'盐田'
          ,'longgang':'龙岗'}
df['district']=df['district'].apply(lambda x : area_m
### 回答1: 对于python数据分析项目——链家上海二手数据分析(一),我可以提供一些帮助。首先,你可以使用Python中的Pandas库来收集和处理链家上海二手房的数据。Pandas可以帮助你从网站上获取相关信息,并针对指定的数据集执行许多不同的操作,以便更好地分析和理解这些数据。此外,还可以使用Matplotlib库来可视化数据,以便更清楚地了解链家上海二手房的特征。 ### 回答2: 链家上海二手数据分析是一个使用Python进行数据探索和分析项目。通过对链家网站上的二手房数据进行爬虫操作,我们可以获取到大量的关于上海二手房的信息。 在这个项目中,我们首先需要搭建一个爬虫,用于从链家网站上获取到二手房的数据。我们可以利用Python中的网络请求库和解析库,如requests和BeautifulSoup,来发送网络请求并解析返回的网页内容,从而获取到我们需要的数据。 获取到数据后,我们可以进行数据清洗和预处理。这一步骤主要是针对数据中存在的缺失值、异常值等问题进行处理,以确保数据的准确性和一致性。我们可以使用Python中的pandas库来进行数据的清洗和预处理操作。 接下来,我们可以对数据进行探索性分析。通过使用Python中的数据可视化库,如matplotlib和seaborn,我们可以对数据的特征进行可视化展示,以便更好地理解数据的分布和关系。我们可以绘制直方图、散点图、箱线图等来探索二手房价格、面积、位置等特征与其他变量之间的关系。 最后,我们可以进行一些统计分析,如计算二手房价格的平均值、中位数等统计指标,以及进行一些基本的回归分析,如线性回归等。这些分析可以帮助我们揭示出二手房市场的一些趋势和规律,为我们做出更好的决策提供依据。 总之,链家上海二手数据分析项目是一个利用Python进行数据爬取、清洗、探索和分析项目,通过对这些步骤的操作,我们可以更好地理解上海二手房市场的情况,并从中获取到有价值的信息。 ### 回答3: 链家是中国最大的房地产经纪公司之一,在其网站上能够找到各个城市的二手房信息。本项目选取了链家上海的二手房数据进行分析。 首先,我们需要从链家网站上爬取二手房的相关数据,包括房屋的价格、面积、区域、朝向、装修情况等等。通过分析这些数据,我们能够得到一些有趣的结论。 比如,我们可以通过计算平均价格和面积,找出上海不同区域二手房的价格及面积分布情况。通过这些分布情况,我们可以了解到哪些区域的二手房更贵,哪些区域的二手房面积更大,帮助购房者做出更明智的决策。 此外,我们还可以通过数据分析,得到不同房屋朝向和装修情况对价格的影响。通过比较不同朝向和装修情况下的价格差异,我们可以了解到市场对于这些因素的偏好,从而也为购房者提供一些参考。 另外,我们还可以通过分析不同时间段内的二手房成交量,找出上海二手房市场的活跃时段。这对于购房者来说也是非常有用的,因为他们可以根据市场活跃程度来选择合适的时间进行购买。 最后,我们还可以通过数据分析,找出上海二手房市场的热门区域和热门楼盘。这些信息对于投资者来说尤为重要,因为他们可以根据市场趋势来选择合适的投资区域和楼盘。 通过对链家上海二手房数据的分析,我们可以得到很多有用的信息,帮助购房者和投资者做出更明智的决策。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值