labelme批量json转二值png数据集及遇到的问题总结

项目:GitHub - yasaorder/json_to_2mask: labelme批量json转二值png数据集

datasets结构


datasets:
    -before
    -json-png    将标签图从json文件中批量取出后指定保存
    -json-png-binary     二至图像最终保存的路径

'''
将label中标注的json文件,转化为可用于分割训练的标签二值化黑白png图片
'''
import os
import cv2
import numpy as np
import shutil
import glob
import re
import xlwt

# def json_png():  第一次转换用到
path = r'datasets'  # 这里是指.json文件所在文件夹的路径
# 批量转换,修改此路径
# 此路径为,json文件所在路径
# def extract_png():  第二次转换用到
path_before = os.path.join(path, "before")     # json文件夹所在位置
path_save_png = os.path.join(path, "json_png")  # 将标签图从json文件中批量取出后指定保存的文件目录
path_save_png_binary = os.path.join(path, "json_png_binary")  # 二至图像最终保存的路径


def pre_treatment():
    '''
    创建三个文件夹用于存储
    json_data用于存储json转换img.png     label.png    label_names.txt   label_viz.png的文件夹
    json_png用于存储从json_data提取出来的label。png(最终存储名字与json文件对应)
    json_png_binary 用于存储最终转换后的8位的单通道黑白图像
    :return:
    '''
    if os.path.isdir(os.path.join(path, "json_data")) is False:
        os.mkdir(os.path.join(path, "json_data"))
    else:
        print('文件已存在')
    if os.path.isdir(os.path.join(path, "json_png")) is False:
        os.mkdir(os.path.join(path, "json_png"))
    else:
        print('文件已存在')
    if os.path.isdir(os.path.join(path, "json_png_binary")) is False:
        os.mkdir(os.path.join(path, "json_png_binary"))
    else:
        print('文件已存在')


def json_png():
    '''
    批量将json转换为img.png     label.png    label_names.txt   label_viz.png
    并存储至当前文件夹下的json_date文件夹中
    :return: 无
    '''
    json_file = glob.glob(os.path.join(path_before, "*.json"))
    os.system("activate labelme")  # 激活labelme环境(根据自己设置的修改)
    for file in json_file:
        os.system("labelme_json_to_dataset.exe %s" % (file))  # 调用进行批量转换

def extract_png():
    '''
    将标签图从json_data文件中批量取出
    :return:
    '''
    for eachfile in os.listdir(path_before):
        path1 = os.path.join(path_before, eachfile)  # 获取单个json文件夹的目录
        if os.path.isdir(path1):
            if path1.find("_json") > 0:  # 判断path1路径是否存在
                if os.path.exists(path1 + '/label.png'):  # 判断path1路径下label.png是否存在
                    path2 = os.path.join(path1, 'label.png')  # 获取PNG所在的路径,准备等待复制
                    path_save = os.path.join(path_save_png, (eachfile.split('_json')[0] + '.png'))  # 将png复制到path2路径下的文件夹中去
                    shutil.copy(path2, path_save)  # 将path2文件复制到path_save
                    print(path2 +"   " + path_save)
                    print(eachfile + ' successfully moved')


def png_to_binary():
    '''
    由于数据集是做二分类分割,所以,需要将ground_truth转换为8位的单通道黑白图像,才能作为训练时的label使用。
    将提取出来的png转换为8位的单通道黑白图像
    '''
    for im in os.listdir(path_save_png):
        img = cv2.imread(os.path.join(path_save_png, im))
        b, g, r = cv2.split(img)
        r[np.where(r != 0)] = 255
        cv2.imwrite(os.path.join(path_save_png_binary, im), r)


def process():
    #pre_treatment()  # 预处理,创建存储所需的相应文件夹
    #json_png()  # 调用labelme的json转换png程序
    extract_png()  # 从转换的数据中提取png图像
    png_to_binary()  # 将png转换为8位的单通道黑白图像,用于分割训练


if __name__ == "__main__":
    process()

参考

labelme批量json转png数据集教程

labelme批量制作数据集教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>