PAT甲级:1040 Longest Symmetric String

题目描述:

Given a string, you are supposed to output the length of the longest symmetric sub-string. For example, given Is PAT&TAP symmetric?, the longest symmetric sub-string is s PAT&TAP s, hence you must output 11.

Input Specification:

Each input file contains one test case which gives a non-empty string of length no more than 1000.

Output Specification:

For each test case, simply print the maximum length in a line.

Sample Input:

Is PAT&TAP symmetric?

Sample Output:

11

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

题目大意: 

给定一个字符串 求最长回文子串的长度

解题思路: 

最长回文子串

dp[i][j] 表示 s[i] 至 s[j]如果是回文子串则为1, 反之则为0
1. s[i]==s[j]  那么只需要 s[i+1], s[j-1]是回文子串, s[i]至s[j] 就是回文子串: dp[i][j] = dp[i+1][j-1]

2. s[i]!=s[j]:
dp[i][j] = 0    s[i]至s[j]不是回文子串
根据从边界出发的原理, 注意到边界都是长度为1或2的子串, 每次转移都对子串的长度-1,  dp[i][j] = dp[i+1][j-1]

不妨考虑按子串的长度和子串的初始位置进行枚举

Python3代码: 


s = input()
length = len(s)
dp = [[0]*(length+10) for i in range(length+10)]
res = ''
for l in range(1,length+1) :
    i = 0 
    while i + l - 1 < length :
        j = i + l - 1
        if l == 1 : dp[i][j] = 1
        elif l == 2 and s[i] == s[j] : dp[i][j] = 2
        else :
            if s[i] == s[j] and dp[i+1][j-1] : dp[i][j] = dp[i+1][j-1] + 2
        if dp[i][j] > len(res) : res = s[i:j+1]
        i += 1
        
print(len(res))

以下是使用KMP算法实现字符串匹配的完整代码: ```c #include <stdio.h> #include <string.h> void computeLPSArray(char *pat, int M, int *lps); void KMPSearch(char *pat, char *txt); int main() { char String[1000001]; char Pattern[11]; int i, j; //输入StringPattern scanf("%s", String); scanf("%s", Pattern); //调用KMPSearch函数进行匹配 KMPSearch(Pattern, String); return 0; } void computeLPSArray(char *pat, int M, int *lps) { int len = 0, i; lps[0] = 0; // lps[0] is always 0 i = 1; while (i < M) { if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } else // (pat[i] != pat[len]) { if (len != 0) { len = lps[len - 1]; } else // if (len == 0) { lps[i] = 0; i++; } } } } void KMPSearch(char *pat, char *txt) { int M = strlen(pat); int N = strlen(txt); // create lps[] that will hold the longest prefix suffix // values for pattern int lps[M]; // Preprocess the pattern (calculate lps[] array) computeLPSArray(pat, M, lps); int i = 0; // index for txt[] int j = 0; // index for pat[] while (i < N) { if (pat[j] == txt[i]) { j++; i++; } if (j == M) { printf("%d\n", i - j); printf("%s\n", &txt[i - j + 1]); j = lps[j - 1]; } // mismatch after j matches else if (i < N && pat[j] != txt[i]) { // Do not match lps[0..lps[j-1]] characters, // they will match anyway if (j != 0) j = lps[j - 1]; else i = i + 1; } } //如果没有匹配成功,输出Not Found if (j == 0) { printf("Not Found\n"); } } ``` 注意:在实际使用中,需要注意输入的StringPattern长度不能超过数组的最大长度,否则会发生数组越界错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UCSD.KS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值