**作者:**Cartman
文章:多智能体 AI 搜索引擎 点击链接,更多实践案例等你探索~
#智谱 BigModel 研习社 是专业的大模型开发者交流平台,欢迎在评论区与我们互动!
传统搜索引擎如今的问题在于输出很多不相关结果(大量垃圾信息 + SEO 操纵的标题党内容),大模型也面临着幻觉问题。
在网上找到有用的答案并非易事。往往需要多次搜索并沿着链接挖掘以找到高质量信息源和正确信息。
但如果用大模型的智力来尝试过滤网络中的无用信息,或许搜索引擎的体验就会变得焕然一新。
现在,聊天就能得到更好的答案:用更自然的对话式方式提问,大模型可以选择使用网络上的信息进行回复。如果更深入地追问,则大模型还能根据聊天的完整上下文来提供更好的答案。
下面我们来看看,如何用智谱 BigModel 开放平台提供的免费模型和产品,搭建自己的AI搜索引擎!
案例概述
当前热门的 AI 搜索,能够深度搜索并总结内容,并生成思维导图,对于各类调研分析工作非常实用。例如:
如果我们也希望在自己的系统中集成类似的能力,可以通过多智能体协作来实现(搜索和思维导图智能体)。
AI 搜索框架
实际场景中,比如用户需要深度调研开源技术方案,生成报告的同时制作成思维导图。AI 搜索方案可以这样设计:
以下是一个实际场景:用户需要 深度调研 开源技术方案,生成报告的同时制作成思维导图。
第一步,快速搜索补充参考信息
首先需要根据用户的任务<调研市场上主流的开源搜索引擎技术架构>,使用搜索工具补充更多的信息。这里我们使用工具 API Web-Search-Pro,具体参考文档。
请求代码
from zhipuai import ZhipuAI
api_key = "API Key"
url = "https://open.bigmodel.cn/api/paas/v4"
client = ZhipuAI(api_key=api_key, base_url=url)
###### Step 1 使用搜索工具来拓展信息
response = client.chat.completions.create(
model="web-search-pro", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": "调研市场上主流的开源搜索引擎技术架构"}
],
top_p=0.7,
temperature=0.1,
stream=False
)
results = response.choices[0].message.tool_calls[1].search_result
print(results)
搜索结果
[{
'content': 'OpenSearch 是一个由社区驱动的开源搜索和分析套件,源于 A9 公司的搜索结果分享格式,现已发展成为具有数据存储、搜索引擎、可视化和用户界面组件的平台。它的特性包括分布式架构、开源性质、强大的安全功能、高性能、可扩展性以及支持插件的系统。OpenSearch 适用于实时应用程序监控、日志分析、网站搜索和数据分析等多种应用场景。此外,OpenSearch 具有活跃的社区支持,并与其他开源工具兼容。它的商业版本,如阿里云的 OpenSearch 服务,提供了额外功能和支持。技术上,OpenSearch 的核心组件包括 OpenSearch Server 和 OpenSearch Dashboards,支持多种索引管理功能、查询语言以及分片和复制机制来提高性能和可靠性。安全性方面,它支持 HTTPS 传输加密和身份验证、授权机制。在日志分析、实时监控、网站搜索、业务分析和机器学习等方面,OpenSearch 都有广泛的应用。它还提供了官方文档、论坛、在线课程和认证计划来支持用户的学习和技能提升。',
'icon': 'https://sfile.chatglm.cn/searchImage/blog_csdn_net_icon.jpg',
'index': 0,
'link': 'https://blog.csdn.net/weixin_41850878/article/details/140689738',
'media': 'CSDN博客',
'refer': 'ref_1',
'title': 'OpenSearch开源搜索和分析套件(发布时间:2024-07-26 09:00:00)'
}, {
'content': '全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选,相信大家多多少少的都听说过它。它可以快速地储存、搜索和分析海量数据。就连维基百科、Stack Overflow、G