前言
自然语言处理(Natural Language Processing,简称NLP)是人工智能领域中的一个重要分支,旨在使计算机能够理解、处理和生成自然语言文本。实体识别(Named Entity Recognition,简称NER)和实体消歧(Named Entity Disambiguation,简称NED)是NLP领域的关键技术,用于识别文本中的命名实体(如人名、地名、组织名等)并将它们与现实世界中的实体关联起来。本文将深入探讨如何使用Python实现实体识别和实体消歧,讲解原理并提供详细的代码示例。
什么是实体识别和实体消歧
实体识别(NER)
实体识别是NLP任务中的一项重要任务,旨在从文本中识别并标记命名实体的边界和类型。命名实体通常包括人名、地名、组织名、日期、货币、百分比等。实体识别的目标是从文本中提取这些实体,例如:
- “Barack Obama 在2008年成为美国总统。”
在上述例子中,"Barack Obama"被识别为人名,"2008年"被识别为日期。
实体消歧(NED)
实体消歧是NLP中一个更具挑战性的任务,它涉及将文本中的命名实体与现实世界中的实体进行关联,以消除歧义。例如,在文本中提到了"苹果"这个词,根据上下文,它可能指的是水果"苹果",也可能指的是科技公司"Apple Inc."。实体消歧的目标是确定在特定上下文中命名实体的确切含义。
实体识别的方法
实体识别通
本文深入探讨Python在自然语言处理中的应用,重点讲述实体识别(NER)和实体消歧(NED)的关键技术。通过实例解析,展示了如何使用spaCy和LOD知识库进行实体识别和消歧,对NLP初学者极具指导价值。
订阅专栏 解锁全文
1381

被折叠的 条评论
为什么被折叠?



