学李沐大佬的《动手学深度学习》的笔记。链接:《动手学深度学习》 — 动手学深度学习 2.0.0-beta0 documentationhttps://zh-v2.d2l.ai/
欠拟合就是模型过于简单,没有学到足够的信息,比如说线性回归模型无法拟合一些平方或者对数关系的数据,训练误差不降低。
过拟合和欠拟合相反,模型过于复杂,但是训练数据比较简单,模型记住了所有的样本,训练误差一直降低,但是验证误差不再降低,甚至生高,就是过拟合。比如说图中的省略号后面就产生了过拟合。
无论是过拟合和欠拟合,主要原因是因为模型容量和和训练数据集的样本集大小不匹配,所以不是越复杂的模型就越好。
训练数据集中的样本越少,我们就越有可能(且更严重地