机器学习中产生过拟合和欠拟合的原因

本文介绍了深度学习中的模型复杂度与数据集大小的关系,探讨了欠拟合和过拟合的概念。欠拟合是模型过于简单导致训练误差无法降低,而过拟合则是模型过于复杂,训练误差低但验证误差高。关键在于找到合适模型复杂度,考虑可调参数数量和参数取值范围。增加数据量通常能改善泛化能力,但也需要避免过拟合。选择模型时,应根据数据集大小来平衡模型复杂度。
摘要由CSDN通过智能技术生成

学李沐大佬的《动手学深度学习》的笔记。链接:《动手学深度学习》 — 动手学深度学习 2.0.0-beta0 documentationicon-default.png?t=M3K6https://zh-v2.d2l.ai/

欠拟合就是模型过于简单,没有学到足够的信息,比如说线性回归模型无法拟合一些平方或者对数关系的数据,训练误差不降低。

过拟合和欠拟合相反,模型过于复杂,但是训练数据比较简单,模型记住了所有的样本,训练误差一直降低,但是验证误差不再降低,甚至生高,就是过拟合。比如说图中的省略号后面就产生了过拟合。

无论是过拟合和欠拟合,主要原因是因为模型容量和和训练数据集的样本集大小不匹配,所以不是越复杂的模型就越好。

训练数据集中的样本越少,我们就越有可能(且更严重地࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值